VLA Discovers Powerful Jet Coming from “Wrong” Kind of Star

Astronomers using the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) have discovered a fast-moving jet of material propelled outward from a type of neutron star previously thought incapable of launching such a jet. The discovery, the scientists said, requires them to fundamentally revise their ideas about how such jets originate.

Neutron stars are superdense objects, the remnants of massive stars that exploded as supernovas. When in binary pairs with “normal” stars, their powerful gravity can pull material away from their companions. That material forms a disk, called an accretion disk, rotating around the neutron star. Jets of material are propelled at nearly the speed of light, perpendicular to the disk.

“We’ve seen jets coming from all types of neutron stars that are pulling material from their companions, with a single exception. Never before have we seen a jet coming from a neutron star with a very strong magnetic field,” said Jakob van den Eijnden of the University of Amsterdam. “That led to a theory that strong magnetic fields prevent jets from forming,” he added.

The new discovery contradicts that theory.

The scientists studied an object called Swift J0243.6+6124 (Sw J0243), discovered on October 3, 2017, by NASA’s orbiting Neil Gehrels Swift Observatory, when the object emitted a burst of X-rays. The object is a slowly-spinning neutron star pulling material from a companion star that is likely significantly more massive than the Sun. The VLA observations began a week after the Swift discovery and continued until January 2018.

Both the fact that the object’s emission at X-ray and radio wavelengths weakened together over time and the characteristics of the radio emission itself convinced the astronomers that they were seeing radio waves produced by a jet.

“This combination is what we see in other jet-producing systems. Alternative mechanisms just don’t explain it,” van den Eijnden said.

Common theories for jet formation in systems like Sw J0243 say the jets are launched by magnetic field lines anchored in the inner parts of the accretion disks. In this scenario, if the neutron star has a very strong magnetic field, that field is overpowering and prevents the jet from forming.

“Our clear discovery of a jet in Sw J0243 disproves that longstanding idea,” van den Eijnden said.

Alternatively, the scientists suggest that Sw J0243’s jet-launching region of the accretion disk could be much farther out than in other types of systems, where the star’s magnetic field is weaker. Another idea, they said, is that the jets may be powered by the neutron star’s rotation, instead of being launched by magnetic field lines in the inner accretion disk.

“Interestingly, the rotation-powered idea predicts that the jet will be significantly weaker from more slowly rotating neutron stars, which is exactly what we see in Sw J0243,” Nathalie Degenaar, also of the University of Amsterdam, said.

The new discovery also implies that Sw J0243 may represent a large group of objects whose radio emission has been too weak to detect until new capabilities provided by the VLA’s major upgrade, completed in 2012, were available. If more such objects are found, the scientists said, they could test the idea that jets are produced by the neutron star’s spin.

The astronomers added that a jet from SwJ0243 may mean that another category of objects, called ultra-luminous X-ray pulsars, also highly magnetized, might produce jets.

“This discovery not only means we have to revise our ideas about jets from such systems, but also opens up exciting new areas of research,” Degenaar said.

Van den Eijnden, Degenaar, and their colleagues are reporting their discovery in the journal Nature.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

Media Contact:

Dave Finley, Public Information Officer
(575) 835-7302
[email protected]

###

In Other News…

IMAGE RELEASE: Moon’s Tycho Crater Revealed in Intricate Detail

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space (RI&S) have released a new high-resolution image of the Moon, the highest-ever taken from the ground using new radar technology on the Green Bank Telescope (GBT).

ACEAP Ambassador Heads into Space as First African-American Woman to Pilot Spacecraft

Astronomy in Chile Educator Ambassadors Program participant pilots SpaceX Dragon spacecraftToday Sian Proctor, a participant in the Astronomy in Chile Educator Ambassadors Program (ACEAP) has successfully piloted the Inspiration4 mission carrying her and three other...

NSF Awards Funding for Next-Generation VLA Antenna Development

The National Science Foundation (NSF) has awarded the National Radio Astronomy Observatory (NRAO) $23 million for design and development work on the Next Generation Very Large Array (ngVLA), including producing a prototype antenna.

Andean Science Diplomacy: Interview with Chile’s Ambassador to the U.S., Ambassador Silva

Ambassador Alfonso Silva Navarro leads Chile’s Embassy to the United States since September 2018. His extensive diplomatic career includes being the Chilean Ambassador to Canada, India, and Jamaica, as well as being the Director General on Foreign Affairs at Chile’s Ministry of Foreign Affairs.

NANOGrav & Green Bank Telescope Poised to Make Groundbreaking Discoveries of Gravitational Wave Universe

For the next three years, astronomers from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) will have increased access and new technologies to use on the National Science Foundation’s Green Bank Telescope (GBT) in their breakthrough scientific studies of gravitational waves.

Astronomers make first clear detection of a moon-forming disc around an exoplanet

Using the Atacama Large Millimeter /submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, astronomers have unambiguously detected the presence of a disc around a planet outside our Solar System for the first time.

AUI and Accumen Partner to Increase Crisis Resilience to Natural and Manmade Disasters for Healthcare Sector

AUI and Accumen, Inc. announced they are partnering to provide services to improve crisis resilience to manmade and natural disasters for the healthcare sector at a historically challenging time.

New Scholarship Established by the AUI Board of Trustees

AUI and the National Radio Astronomy Observatory (NRAO) today announced the establishment of the AUI Board of Trustees NAC Bridge Scholarship Award.

2021 Jansky Lectureship Awarded to Mexican Astronomer

Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2021 Karl G. Jansky Lectureship to Professor Luis F. Rodriguez of the National University of Mexico (UNAM).

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities in commemoration of the Stonewall Uprising of 1969. At AUI, we celebrate an environment that is safe and welcoming to all, and the strength that our diversity brings us.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL