VIDEO: Multi-wavelength Observations Reveal Impact of Black Hole on M87 Galaxy

Credit: EHT Collaboration; NASA/Swift; NASA/Fermi; Caltech-NuSTAR; CXC; CfA-VERITAS; MAGIC; HESS

In 2019, a worldwide collaboration of scientists used a global collection of radio telescopes called the Event Horizon Telescope (EHT) to make the first-ever image of a black hole — the supermassive black hole at the core of the galaxy M87, some 55 million light-years from Earth. This long-sought achievement was an important scientific landmark. However, any image at a single wavelength can give only a partial picture of the entire phenomenon.

“We knew that the first direct image of a black hole would be groundbreaking,” said Kazuhiro Hada of the National Astronomical Observatory of Japan, a co-author on the new study. “But to get the most out of this remarkable image, we need to know everything we can about the black hole’s behavior at that time by observing over the entire electromagnetic spectrum.”

The tremendous gravitational pull of a supermassive black hole can power jets of particles that travel at nearly the speed of light across vast distances. The result produces electromagnetic radiation spanning the entire range from radio waves to visible light, to gamma rays.

In this video, results from each telescope across the observing campaign reveal previously unseen structures and the impact of the black hole on its surroundings in regions spanning one to 100,000 light-years across.

“Understanding the particle acceleration is really central to our understanding of both the EHT image as well as the jets, in all their ‘colors’,” said co-author Sera Markoff, from the University of Amsterdam. “These jets manage to transport energy released by the black hole out to scales larger than the host galaxy, like a huge power cord. Our results will help us calculate the amount of power carried, and the effect the black hole’s jets have on its environment.”

To expand their view of the region around the 6.5-million-solar-mass black hole, scientists mounted a multi-wavelength observing campaign, including 19 ground-and space-based observatories working at gamma-ray, X-ray, visible-light, and radio wavelengths. The study used the Atacama Large Millimeter/submillimeter Array (ALMA) and the National Science Foundation’s Very Long Baseline Array (VLBA).

“There are multiple groups eager to see if their models are a match for these rich observations, and we’re excited to see the whole community use this public data set to help us better understand the deep links between black holes and their jets,” said co-author Daryl Haggard of McGill University.

This new study, reported in The Astrophysical Journal Letters, provides a valuable resource for helping scientists understand the physics of how such monster black holes operate and strongly affect their surroundings.

###

 

In Other News…

2022 AUI Scholarship Recipients

Below are the six recipients of the 2022 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. ELIJAH...

Astronomers Reveal First Image of the Black Hole at the Heart of Our Galaxy

This news article was originally published on NRAO.edu on May 12, 2022.Credit: EHT CollaborationAt simultaneous press conferences around the world, including at a National Science Foundation-sponsored press conference at the US National Press Club in Washington, D.C.,...

Scientists Find Elusive Gas From Post-starburst Galaxies Hiding in Plain Sight

This news article was originally published on NRAO.edu on Apr. 25, 2022.Scientists discovered that post-starburst galaxies condense their gas rather than expelling it, begging the question: what’s actually keeping them from forming stars? Post-starburst galaxies were...

Applications Accepted for 2022 Astronomy in Chile Educator Ambassadors Program

Applications are now being accepted for the 2022 Astronomy in Chile Educator Ambassadors Program (ACEAP).

Inspiring, Retaining and Promoting Female Talent in STEM Careers

Retaining and promoting female talent in science, technology, engineering, and mathematics (STEM) is a goal that must be embraced by large scientific facilities, civil society, academia and the private sector.

NRAO Researcher Receives Prestigious Engineering Award

Matthew Morgan, a scientist and research engineer at the National Radio Astronomy Observatory’s Central Development Laboratory, has received a prestigious engineering award for work that has beneficial applications far beyond its original purpose in radio astronomy.

Big Astronomy Hosts Live Talk and Q&A with Astronaut Dr. Sian Proctor

On Friday, February 4 at 7:00 pm EST, join astronaut, geoscientist, explorer and space artist Dr. Sian Proctor for a live talk and Q&A hosted by Big Astronomy.

NRAO Director Tony Beasley Honored as Lifetime AAAS Fellow

Tony Beasley, Director of the National Radio Astronomy Observatory and AUI Vice President for Radio Astronomy Operations, was today elected as a fellow of the American Association for the Advancement of Science (AAAS).

Stanley Whittingham on development in Chile: “Perhaps in 15 years they will no longer have internal combustion vehicles”

This news article was originally published on FUTURO360.com on Jan. 19, 2022.The chemist referred to encouraging the production of clean energy in order to stop the damage that has been caused during the last 30 years, which has encouraged global warming. In addition,...

28 WOMEN in STEM BECAME the FIRST GENERATION of PROVOCA MENTORS

As the end of 2021 approaches, we celebrate the certification of 28 women in STEM who became the first generation of PROVOCA mentors, a trained group of professionals and students in science, technology, engineering and mathematics that will provide mentoring to girls and young college students who decide to pursue a career in these disciplines.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL