Trans-galactic Streamers Feeding Most Luminous Galaxy in the Universe

The most luminous

galaxy in the universe has been caught in the act of stripping away nearly half the mass from at least three of its smaller neighbors, according to a new study published in the journal Science. The light from this galaxy, known as W2246-0526, took 12.4 billion years to reach us, so we are seeing it as it was when our universe was only about a tenth of its present age.

New observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

reveal distinct streamers of material being pulled from three smaller galaxies and flowing into the more massive galaxy, which was discovered in 2015 by NASA’s space-based Wide-field Infrared Survey Explorer (WISE). It is by no means the largest or most massive galaxy we know of, but it is unrivaled in its brightness, emitting as much infrared light as 350 trillion Suns.

The connecting tendrils between the galaxies contain about as much material as the galaxies themselves. ALMA’s amazing resolution and sensitivity allowed the researchers to detect these remarkably faint and distant trans-galactic streamers.

“We knew from previous data that there were three companion galaxies, but there was no evidence of interactions between these neighbors and the central source,” said Tanio Díaz-Santos of the Universidad Diego Portales in Santiago, Chile, lead author of the study. “We weren’t looking for cannibalistic behavior and weren’t expecting it, but this deep dive with the ALMA observatory makes it very clear.”

Galactic cannibalism is not uncommon, though this is the most distant galaxy in which such behavior has been observed and the study authors are not aware of any other direct images of a galaxy simultaneously feeding on material from multiple sources at those early cosmic times.

The researchers emphasize that the amount of gas being devoured by W2246-0526 is enough to keep it forming stars and feeding its central black hole for hundreds of millions of years.

This galaxy’s startling luminosity is not due to its individual stars. Rather, its brightness is powered by a tiny, yet fantastically energetic disk of gas that is being superheated as it spirals in on the supermassive black hole

. The light from this blazingly bright accretion disk

is then absorbed by the surrounding dust, which re-emits the energy as infrared light.

This extreme infrared radiation makes this galaxy one of a rare class of quasars

known as Hot, Dust-Obscured Galaxies or Hot DOGs. Only about one out of every 3,000 quasars

observed by WISE belongs to this class.

Much of the dust and gas being siphoned away from the three smaller galaxies is likely being converted into new stars and feeding the larger galaxy’s central black hole. This galaxy’s gluttony, however, may lead to its self-destruction. Previous research suggests that the energy of the AGN will ultimately jettison much, if not all of the galaxy’s star-forming fuel.

An earlier work led by co-author Chao-Wei Tsai of UCLA estimates that the black hole at the center of W2246-0526 is about 4 billion times the mass of the Sun. The mass of the black hole directly influences how bright the AGN can become, but — according to this earlier research — W2246-0526 is about 3 times more luminous than what should be possible. Solving this apparent contradiction will require additional observations.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

# # #

Contact:
Charles Blue, Public Information Officer
(434) 296-0314; cblue@nrao.edu

This research is presented in a paper titled “The Multiple Merger Assembly of a Hyper-luminous Obscured Quasar at redshift 4.6 ” by T. Díaz-Santos et al. in the journal Science.  [http://science.sciencemag.org/cgi/doi/10.1126/science.aap7605]

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Southern Observatory (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

In Other News…

Coverage on National Commision on Grid Resilience’s (NCGR) Latest Report

The following is press coverage on the NCGR's new report, courtesy of UtilityDive.com.   Dive Brief: A new report from the National Commission on Grid Resilience (NCGR) calls for declassifying and giving utilities greater access to information about threats...

Woodstar Labs Welcomes New Wave of Cyber Analysts

Woodstar Labs, a subsidiary of AUI focused on cutting-edge-cybersecurity solutions, microelectronics, eLearning, and STEM education welcomes a new cohort of Cyber Analysts. Woodstar labs is excited to work with this talented group of young professionals as we continue...

AUI Statement on Racial Equity

As the nation continues to mourn and respond to the unjust death of George Floyd, there is no doubt that violent race-related incidents and the subsequent protests and clashes are the most urgent need for us as a society to address. Further, to address them, we must...

2020 AUI Scholarship Winners

Below are the winners of the 2020 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. Lexington Miller...

Big Astronomy Wins Big

Big Astronomy wins “Best Astronomy Education” Award in the Dome Under Fulldome Film Festival. Melbourne: The Dome Under Fulldome Film Festival hosted its first planetarium film fest in Melbourne, Australia, on February 8 – 9. Big Astronomy: People Places Discoveries,...

IAU-NRF Regional Office of Astronomy for Development Launched in North America

The North American Regional Office of Astronomy for Development was officially established on 29th January 2020 at a signing ceremony in Cape Town, South Africa. The event was attended by the President of the International Astronomical Union (IAU) and marked the...

Astronomers Find Wandering Massive Black Holes in Dwarf Galaxies

Roughly half of the newly-discovered black holes are not at the centers of their galaxies Credit: Sophia Dagnello, NRAO/AUI/NSF Astronomers seeking to learn about the mechanisms that formed massive black holes in the early history of the Universe have gained important...

AUI Trustee, Gabriela González Named 2019 SEC Professor of the Year

BIRMINGHAM, Ala. – Dr. Gabriela González, Professor of Physics and Astronomy at Louisiana State University, has been named the 2019 SEC Professor of the Year, SEC Commissioner Greg Sankey announced on Wednesday. González is the second professor from LSU to win the...

A Weakened Black Hole Allows its Galaxy to Awaken

Astronomers Find First Example of Furious Star Formation at Core of a Galaxy Cluster Hot gas, radio jets, and star formation in a galaxy cluster Credit: X-ray: NASA/CXC/MIT/M.McDonald et al; Radio: NRAO/AUI/NSF; Optical: NASA/STScI. Astronomers have confirmed the...

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL