Scientists Find Elusive Gas From Post-starburst Galaxies Hiding in Plain Sight

This news article was originally published on NRAO.edu on Apr. 25, 2022.

Scientists discovered that post-starburst galaxies condense their gas rather than expelling it, begging the question: what’s actually keeping them from forming stars?

Post-starburst galaxies were previously thought to scatter all of their gas and dust—the fuel required for creating new stars—in violent bursts of energy, and with extraordinary speed. Now, new data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveals that these galaxies don’t scatter all of their star-forming fuel after all. Instead, after their supposed end, these dormant galaxies hold onto and compress large amounts of highly-concentrated, turbulent gas. But contrary to expectation, they’re not using it to form stars.

In most galaxies, scientists expect gas to be distributed in a way similar to starlight. But for post-starburst galaxies, or PSBs, this isn’t the case. PSBs are different from other galaxies because they are born in the aftermath of violent collisions, or mergers between galaxies. Galaxy mergers typically trigger massive bursts of star formation, but in PSBs, this outburst slows down and near-completely stops almost as soon as it begins. As a result, scientists previously believed that little or no star-forming fuel was left in these galaxies’ central star-forming factories. And until now, the belief was that the molecular gases had been redistributed to radii well beyond the galaxies, either through stellar processes or by the effects of black holes. The new results challenge this theory. 

“We’ve known for some time that large amounts of molecular gas remains in the vicinity of PSBs but haven’t been able to say where, which in turn, has prevented us from understanding why these galaxies stopped forming stars. Now, we have discovered a considerable amount of remaining gas within the galaxies and that remaining gas is very compact,” said Adam Smercina, an astronomer at the University of Washington and the principal investigator of the study. “While this compact gas should be forming stars efficiently, it isn’t. In fact, it is less than 10-percent as efficient as similarly compact gas is expected to be.”

In addition to being compact enough to make stars, the gas in the observed dormant—or quiescent—galaxies had another surprise in store for the team: it was often centrally-located, though not always, and was surprisingly turbulent. Combined, these two characteristics led to more questions than answers for researchers. 

“The rates of star formation in the PSBs we observed are much lower than in other galaxies, even though there appears to be plenty of fuel to sustain the process,” said Smercina. “In this case, star formation may be suppressed due to turbulence in the gas, much like a strong wind can suppress a fire. However, star formation can also be enhanced by turbulence, just like wind can fan flames, so understanding what is generating this turbulent energy, and how exactly it is contributing to dormancy, is a remaining question of this work.” 

Decker French, an astronomer at the University of Illinois, and a co-author of the research added, “These results raise the question of what energy sources are present in these galaxies to drive turbulence and prevent the gas from forming new stars. One possibility is energy from the accretion disk of the central supermassive black holes in these galaxies.”

A clear understanding of the processes that govern the formation of stars and galaxies is key to providing context to the Universe and our place in it. The discovery of turbulent, compact gas in otherwise dormant galaxies gives researchers one more clue to solving the mystery of how galaxies in particular live, evolve and die over the course of billions of years. And that means additional future research with the help of ALMA’s 1.3mm receiver, which sees the otherwise invisible with stark clarity. 

J.D. Smith, an astronomer at the University of Toledo, and a co-author of the research said, “There is much about the evolution of a typical galaxy we don’t understand, and the transition from their vibrant star-forming lives into quiescence is one of the least understood periods. Although post-starbursts were very common in the early Universe, today they are quite rare. This means the nearest examples are still hundreds of millions of light-years away, but these events foreshadow the potential outcome of a collision, or merger, between the Milky Way Galaxy and the Andromeda Galaxy several billion years from now. Only with the incredible resolving power of ALMA could we peer deep into the molecular reservoirs left behind ‘after the fall.’”

Smercina added, “It’s often the case that we as astronomers intuit the answers to our own questions ahead of observations, but this time, we learned something completely unexpected about the Universe.”

The results of the study are published today in The Astrophysical Journal.

Resource

“After The Fall: Resolving the Molecular Gas in Post-Starburst Galaxies,” Smercina et al (2022), The Astrophysical Journal, doi: 10.3847/1538-4357/ac5d5f

Comunicado de prensa en español

About NRAO

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

About ALMA

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

 

In Other News…

Heising—Simons Foundation Partners with AUI and the IAU to Boost Gender Equity Programs for Young Astronomers

The Heising–Simons Foundation (HSF) has awarded $126,500 to Associated Universities, Inc. (AUI) and the International Astronomical Union (IAU) to support two programs: the Women and Girls in Astronomy project and the IAU Junior Member Travel Grant Fund. Women and...

New NSF Funded Project Will Study How Podcasts Can Support Inclusive STEM Learning

[Washington, D.C.] Tumble Media, in partnership with Associated Universities Inc (AUI), Oregon State University (OSU) and Independence Science, has been awarded a $1 million grant by the National Science Foundation (NSF) Division Of Research On Learning. The team will...

AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients

This news article was originally published on NRAO.edu on July 5, 2022.AUI and the National Radio Astronomy Observatory (NRAO) have announced the recipients of the 2022 AUI Board of Trustees NAC Bridge Scholarship Award. Now in its second year, the scholarship...

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities and commemoration of the Stonewall Uprising of 1969 and the ensuing liberation movement it inspired for the ongoing fight for full equality.  At AUI, we celebrate an environment that is safe and welcoming...

2022 AUI Scholarship Recipients

Below are the six recipients of the 2022 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. ELIJAH...

Astronomers Reveal First Image of the Black Hole at the Heart of Our Galaxy

This news article was originally published on NRAO.edu on May 12, 2022.Credit: EHT CollaborationAt simultaneous press conferences around the world, including at a National Science Foundation-sponsored press conference at the US National Press Club in Washington, D.C.,...

Applications Accepted for 2022 Astronomy in Chile Educator Ambassadors Program

Applications are now being accepted for the 2022 Astronomy in Chile Educator Ambassadors Program (ACEAP).

Inspiring, Retaining and Promoting Female Talent in STEM Careers

Retaining and promoting female talent in science, technology, engineering, and mathematics (STEM) is a goal that must be embraced by large scientific facilities, civil society, academia and the private sector.

NRAO Researcher Receives Prestigious Engineering Award

Matthew Morgan, a scientist and research engineer at the National Radio Astronomy Observatory’s Central Development Laboratory, has received a prestigious engineering award for work that has beneficial applications far beyond its original purpose in radio astronomy.

Big Astronomy Hosts Live Talk and Q&A with Astronaut Dr. Sian Proctor

On Friday, February 4 at 7:00 pm EST, join astronaut, geoscientist, explorer and space artist Dr. Sian Proctor for a live talk and Q&A hosted by Big Astronomy.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL