NRAO’s Central Development Laboratory: Making the Invisible Visible

The team at CDL pushes the limits of engineering to help NRAO see the universe in new and powerful ways.

Nestled among the hills of the University of Virginia campus are a couple of nondescript buildings. They are home to NRAO’s Central Development Laboratory (CDL). The buildings are easy to overlook, just as it is easy to overlook the work done by CDL. We see photographs of the radio dishes at Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA) under a starry sky, and the beautifully rendered scientific images they produce. But between these two extremes is a complex set of processes that transform the faint radio signals of distant space into usable scientific data. Achieving that transformation effectively is one of CDLs most important jobs.

Radio is light, similar to the visible light we see all around us, but with much longer wavelengths. The wavelength of visible light is similar to the size of microscopic bacteria, while radio light has wavelengths ranging from millimeters to meters. Radio images can’t be captured on photographic film, or converted to an image by a simple digital camera. Instead, the signal must be amplified, filtered, and processed in multiple stages before its information can be stored on a digital chip.

Examples of feed horns and waveguides. Credit: NRAO/AUI/NSF

Sri Srikanth works on one of the first stages: capturing and focusing radio signals so that they are strong and clear. This is done with feed horns and polarizers. The feed horn is like a funnel that maximizes the radio signal. To be effective, a feed horn must be scaled relative to the wavelength. The shorter the wavelength, the smaller the feed horn must be. Ridges inside the feed horn helps prepare the signal for the polarizer, which splits the signal into perpendicular parts. These components are designed to carry the signal through to the next stage with very little loss.

Before the signal can be converted from analog radio to digital, it must be pre-processed. A large part of this stage involves amplification and downconversion. This is where Matt Morgan comes in. He designs the systems that make the signal usable by computer processors. Computer chips operate at frequencies up to the GHz range, but the radio frequencies captured by telescopes can be as much as a thousand times higher. Downconversion involves combining the radio signal with another signal of a similar frequency. These two signals interfere to create a signal of much lower frequency. When done correctly, this creates a GHz frequency radio signal that contains all the information of the original. Once this is done it can be converted to a digital signal.

A prototype for an analog to digital converter. Credit: NRAO/AUI/NSF

Analog to digital conversion is common in our modern world. We use it all the time to watch digital television or browse cat pictures on the Internet. Radio astronomy signals are converted in a similar way, but they carry so much information that you need a specially designed computer chip to keep up with the bandwidth. Omar Ojeda creates these chips by first building prototypes using off-the-shelf parts. His prototypes are about the size of a laptop. Once the design is optimized and tested it is built into chips that would easily fit on the tip of your finger. With these custom designs radio telescopes can capture more radio data at lower costs.

Much of this needs to be done at extremely low temperatures. Radio light is often produced by cold gas and dust in deep space. To see these signals your detectors need to be even colder. This is a particular challenge because computer processors and power systems generate heat as they operate. Joey Lambert is a low-temperature physicist who works on signal mixers. These are made of superconducting materials and require low temperatures to operate.

All of these stages need to work together smoothly, so CDL coordinates with astronomers and engineers to address needs as they arise. Observatories such as ALMA and the VLA are at the cutting edge of radio astronomy. They not only give us amazing radio images, they also teach us how to observe the radio sky more effectively and in more detail. The Central Development Laboratory works to ensure that NRAO observatories will always be improving.

In Other News…

Big Astronomy Planetarium Show Premieres September 26

Big Astronomy planetarium show premieres September 26 Turn your phone into a planetarium with innovative and immersive 360° streaming San Francisco – The Big Astronomy worldwide premiere is coming soon to a smart phone or connected device near you! On September 26 at...

ALMA Discovers Misaligned Rings in Planet-Forming Disk Around Triple Stars

Using the Atacama Large Millimeter/submillimeter Array (ALMA), two teams of astronomers have for the first time discovered a planet-forming disk with misaligned rings around a triple star system, called GW Orionis. The astronomers give two possible scenarios for the...

Why North Carolina Outsourced Election Cybersecurity to a ‘CISO-as-a-Service’

The following is press coverage on Woodstar Labs' involvement with North Carolina's election security, courtesy of statescoop.com. Faced with mounting cybersecurity needs headed toward the presidential election, but lacking the financial resources to build out a more...

A Cyber-Risk We’re Not Prepared For: What if the Power Grid Collapsed and America Went Dark?

The following is press coverage on the NCGR's new report, courtesy of washingtonpost.com. EVERY CATASTROPHE comes as a shock, but many shouldn’t come as a surprise. Just as we knew a pandemic was a possibility yet failed to plan for it, power-grid collapse is a threat...

Grid Security And Cyber Defense Cannot Fall On Deaf Ears, Experts Warn

The following is press coverage on the NCGR's new report, courtesy of Forbes.com. If the electrical grid is knocked out for long periods, the damage to the American economy would be insurmountable. And the country’s enemies know that. That is why its brain trust is...

Coverage on National Commision on Grid Resilience’s (NCGR) Latest Report

The following is press coverage on the NCGR's new report, courtesy of UtilityDive.com.   Dive Brief: A new report from the National Commission on Grid Resilience (NCGR) calls for declassifying and giving utilities greater access to information about threats...

Woodstar Labs Welcomes New Wave of Cyber Analysts

Woodstar Labs, a subsidiary of AUI focused on cutting-edge-cybersecurity solutions, microelectronics, eLearning, and STEM education welcomes a new cohort of Cyber Analysts. Woodstar labs is excited to work with this talented group of young professionals as we continue...

AUI Statement on Racial Equity

As the nation continues to mourn and respond to the unjust death of George Floyd, there is no doubt that violent race-related incidents and the subsequent protests and clashes are the most urgent need for us as a society to address. Further, to address them, we must...

2020 AUI Scholarship Winners

Below are the winners of the 2020 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. Lexington Miller...

Big Astronomy Wins Big

Big Astronomy wins “Best Astronomy Education” Award in the Dome Under Fulldome Film Festival. Melbourne: The Dome Under Fulldome Film Festival hosted its first planetarium film fest in Melbourne, Australia, on February 8 – 9. Big Astronomy: People Places Discoveries,...

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL