A groundbreaking discovery has revealed the presence of a blazar—a supermassive black hole with a jet pointed directly at Earth—at an extraordinary redshift of 7.0. The object, designated VLASS J041009.05−013919.88 (J0410−0139), is the most distant blazar ever identified, providing a rare glimpse into the epoch of reionization when the universe was less than 800 million years old.
Recent News
ALMA and the Event Horizon Telescope: Moving Towards a Close-Up of a Black Hole and its Jets
An international research team has shown that the Event Horizon Telescope will be able to make exciting images of a supermassive black hole and its jets in the galaxy NGC 1052. The measurements, made with interconnected radio telescopes, also confirm strong magnetic fields close to the black hole’s edge.
Black Hole Explorer Hopes to Reveal New Details of Supermassive Black Holes
Anew agreement between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) will help the Event Horizon Telescope (EHT) take its next steps – into space.
NRAO and STARGATE Collaboration to Spur Innovation: MOU Launches New Initiative
The National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., and the Center for Advanced Radio Astronomy (CARA) at the University of Texas, Brownsville (UTB), have signed a Memorandum of Understanding (MOU) laying the groundwork for collaborating on new initiatives and frontier radio astronomy technologies.
This collaboration will foster leading-edge research and development at both NRAO’s Central Development Laboratory, where some of the world’s most sophisticated radio astronomy technologies are engineered, and STARGATE (Spacecraft Tracking and Astronomical Research into Giga-hertz Astrophysical Transient Emission), a public-private partnership at CARA to develop new radio frequency based technologies for a wide range of academic and commercial applications.
STARGATE was conceived by UTB Professor Fredrick Jenet as a partnership between CARA and SpaceX, a private aerospace company headquartered in Hawthorne, California. Its mission is to foster the spirit of Silicon Valley in the Rio Grande Valley area. Many of the communications and radio technologies proposed by STARGATE share similar engineering constraints with the radio astronomy components developed by NRAO. These overlapping design challenges and opportunities paved the way for the two organizations to work together.
“There are obvious opportunities for NRAO and STARGATE to share knowledge and experience so both organizations can innovate and lead on these highly specialized, highly advanced technologies,” said Jenet. “I am thrilled to work with the entire team at NRAO, which is world-renowned for its engineering capabilities.”
Initial areas of collaboration, according to the MOU, will focus on “large interferometric arrays, with special emphasis on phased array receiver systems.” These technologies will then hopefully lead to joint observational research programs in areas such as pulsar studies, spectroscopic observations of various interstellar atoms and molecules, and other forefront astronomical observations.
Additionally, this collaboration will jointly explore the development of novel spacecraft tracking and location techniques for both Earth-orbit and interplanetary missions.
NRAO instruments have been used previously to track spacecraft with unprecedented precision. Knowing the location of these spacecraft is essential for a number of scientific research projects as well as guiding distance spacecraft, such as New Horizons, with pinpoint accuracy to objects in the farthest reaches of our solar system.
The MOU also enables NRAO and CARA to team up on Science, Technology, Engineering and Mathematics (STEM) education initiatives and to hold joint workshops on topics of common interest.
“Sharing similar aspirations makes this collaboration an obvious benefit for both our organizations,” said NRAO Director Tony Beasley. “We look forward to working together and achieving some very lofty goals.”
Recent News
Astronomers Detect Earliest and Most Distant Blazar in the Universe
A groundbreaking discovery has revealed the presence of a blazar—a supermassive black hole with a jet pointed directly at Earth—at an extraordinary redshift of 7.0. The object, designated VLASS J041009.05−013919.88 (J0410−0139), is the most distant blazar ever identified, providing a rare glimpse into the epoch of reionization when the universe was less than 800 million years old.
ALMA and the Event Horizon Telescope: Moving Towards a Close-Up of a Black Hole and its Jets
An international research team has shown that the Event Horizon Telescope will be able to make exciting images of a supermassive black hole and its jets in the galaxy NGC 1052. The measurements, made with interconnected radio telescopes, also confirm strong magnetic fields close to the black hole’s edge.
Black Hole Explorer Hopes to Reveal New Details of Supermassive Black Holes
Anew agreement between the Center for Astrophysics | Harvard & Smithsonian (CfA) and the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) will help the Event Horizon Telescope (EHT) take its next steps – into space.