Most Massive Neutron Star Ever Detected, Almost too Massive to Exist

Astronomers using the GBT have discovered the most massive neutron star to date, a rapidly spinning pulsar approximately 4,600 light-years from Earth. This record-breaking object is teetering on the edge of existence, approaching the theoretical maximum mass possible for a neutron star.

Artist impression of the pulse from a massive neutron star being delayed by the passage of a white dwarf star between the neutron star and Earth. Credit: BSaxton, NRAO/AUI/NSF

Neutron stars – the compressed remains of massive stars gone supernova – are the densest “normal” objects in the known universe. (Black holes are technically denser, but far from normal.) Just a single sugar-cube worth of neutron-star material would weigh 100 million tons here on Earth, or about the same as the entire human population. Though astronomers and physicists have studied and marveled at these objects for decades, many mysteries remain about the nature of their interiors: Do crushed neutrons become “superfluid” and flow freely? Do they breakdown into a soup of subatomic quarks or other exotic particles? What is the tipping point when gravity wins out over matter and forms a black hole?

A team of astronomers using the National Science Foundation’s (NSF) Green Bank Telescope (GBT) has brought us closer to finding the answers.

The researchers, members of the NANOGrav Physics Frontiers Center, discovered that a rapidly rotating millisecond pulsar, called J0740+6620, is the most massive neutron star ever measured, packing 2.17 times the mass of our Sun into a sphere only 30 kilometers across. This measurement approaches the limits of how massive and compact a single object can become without crushing itself down into a black hole. Recent work involving gravitational waves observed from colliding neutron stars by LIGO suggests that 2.17 solar masses might be very near that limit.

“Neutron stars are as mysterious as they are fascinating,” said Thankful Cromartie, a graduate student at the University of Virginia and Grote Reber pre-doctoral fellow at the National Radio Astronomy Observatory in Charlottesville, Virginia. “These city-sized objects are essentially ginormous atomic nuclei. They are so massive that their interiors take on weird properties. Finding the maximum mass that physics and nature will allow can teach us a great deal about this otherwise inaccessible realm in astrophysics.”

Pulsars get their name because of the twin beams of radio waves they emit from their magnetic poles. These beams sweep across space in a lighthouse-like fashion. Some rotate hundreds of times each second. Since pulsars spin with such phenomenal speed and regularity, astronomers can use them as the cosmic equivalent of atomic clocks. Such precise timekeeping helps astronomers study the nature of spacetime, measure the masses of stellar objects, and improve their understanding of general relativity.

In the case of this binary system, which is nearly edge-on in relation to Earth, this cosmic precision provided a pathway for astronomers to calculate the mass of the two stars.

Artist impression and animation of the Shapiro Delay. As the neutron star sends a steady pulse towards the Earth, the passage of its companion white dwarf star warps the space surrounding it, creating the subtle delay in the pulse signal. Animation: BSaxton, NRAO/AUI/NSF

As the ticking pulsar passes behind its white dwarf companion, there is a subtle (on the order of 10 millionths of a second) delay in the arrival time of the signals. This  phenomenon is known as “Shapiro Delay.” In essence, gravity from the white dwarf star slightly warps the space surrounding it, in accordance with Einstein’s general theory of relativity. This warping means the pulses from the rotating neutron star have to travel just a little bit farther as they wend their way around the distortions of spacetime caused by the white dwarf.

Astronomers can use the amount of that delay to calculate the mass of the white dwarf. Once the mass of one of the co-orbiting bodies is known, it is a relatively straightforward process to accurately determine the mass of the other.

Cromartie is the principal author on a paper accepted for publication in Nature Astronomy. The GBT observations were research related to her doctoral thesis, which proposed observing this system at two special points in their mutual orbits to accurately calculate the mass of the neutron star.

“The orientation of this binary star system created a fantastic cosmic laboratory,” said Scott Ransom, an astronomer at NRAO and coauthor on the paper. “Neutron stars have this tipping point where their interior densities get so extreme that the force of gravity overwhelms even the ability of neutrons to resist further collapse. Each “most massive” neutron star we find  brings us closer to identifying that tipping point and helping us to understand the physics of matter at these mindboggling densities.”

These observation were also part of a larger observing campaign known as NANOGrav, short for the North American Nanohertz Observatory for Gravitational Waves, which is a Physics Frontiers Center funded by the NSF.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Green Bank Observatory is supported by the National Science Foundation, and is operated under cooperative agreement by Associated Universities, Inc. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation.

In Other News…

Industrial Cybersecurity: A Culture Change

The following is an article from UPDATE, the official publication of Utah Petroleum Association, Issue 4 2020.  Reliable operational technology (OT) or industrial control systems (ICS) underpin every facet of American lives. Without them, our defenses, our economy,...

How would Trump or Biden deal with grid hacking threats?

POLITICS How would Trump or Biden deal with grid hacking threats? Christian Vasquez, E&E News reporter Published: Tuesday, November 3, 2020 President Trump and Democratic presidential nominee Joe Biden have a few competing plans for the nation's cybersecurity —...

Big Astronomy Planetarium Show Premieres September 26

Big Astronomy planetarium show premieres September 26 Turn your phone into a planetarium with innovative and immersive 360° streaming San Francisco – The Big Astronomy worldwide premiere is coming soon to a smart phone or connected device near you! On September 26 at...

ALMA Discovers Misaligned Rings in Planet-Forming Disk Around Triple Stars

Using the Atacama Large Millimeter/submillimeter Array (ALMA), two teams of astronomers have for the first time discovered a planet-forming disk with misaligned rings around a triple star system, called GW Orionis. The astronomers give two possible scenarios for the...

Why North Carolina Outsourced Election Cybersecurity to a ‘CISO-as-a-Service’

The following is press coverage on Woodstar Labs' involvement with North Carolina's election security, courtesy of statescoop.com. Faced with mounting cybersecurity needs headed toward the presidential election, but lacking the financial resources to build out a more...

A Cyber-Risk We’re Not Prepared For: What if the Power Grid Collapsed and America Went Dark?

The following is press coverage on the NCGR's new report, courtesy of washingtonpost.com. EVERY CATASTROPHE comes as a shock, but many shouldn’t come as a surprise. Just as we knew a pandemic was a possibility yet failed to plan for it, power-grid collapse is a threat...

Grid Security And Cyber Defense Cannot Fall On Deaf Ears, Experts Warn

The following is press coverage on the NCGR's new report, courtesy of Forbes.com. If the electrical grid is knocked out for long periods, the damage to the American economy would be insurmountable. And the country’s enemies know that. That is why its brain trust is...

Coverage on National Commision on Grid Resilience’s (NCGR) Latest Report

The following is press coverage on the NCGR's new report, courtesy of UtilityDive.com.   Dive Brief: A new report from the National Commission on Grid Resilience (NCGR) calls for declassifying and giving utilities greater access to information about threats...

Woodstar Labs Welcomes New Wave of Cyber Analysts

Woodstar Labs, a subsidiary of AUI focused on cutting-edge-cybersecurity solutions, microelectronics, eLearning, and STEM education welcomes a new cohort of Cyber Analysts. Woodstar labs is excited to work with this talented group of young professionals as we continue...

AUI Statement on Racial Equity

As the nation continues to mourn and respond to the unjust death of George Floyd, there is no doubt that violent race-related incidents and the subsequent protests and clashes are the most urgent need for us as a society to address. Further, to address them, we must...

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL