Most Massive Neutron Star Ever Detected, Almost too Massive to Exist

Astronomers using the GBT have discovered the most massive neutron star to date, a rapidly spinning pulsar approximately 4,600 light-years from Earth. This record-breaking object is teetering on the edge of existence, approaching the theoretical maximum mass possible for a neutron star.

Artist impression of the pulse from a massive neutron star being delayed by the passage of a white dwarf star between the neutron star and Earth. Credit: BSaxton, NRAO/AUI/NSF

Neutron stars – the compressed remains of massive stars gone supernova – are the densest “normal” objects in the known universe. (Black holes are technically denser, but far from normal.) Just a single sugar-cube worth of neutron-star material would weigh 100 million tons here on Earth, or about the same as the entire human population. Though astronomers and physicists have studied and marveled at these objects for decades, many mysteries remain about the nature of their interiors: Do crushed neutrons become “superfluid” and flow freely? Do they breakdown into a soup of subatomic quarks or other exotic particles? What is the tipping point when gravity wins out over matter and forms a black hole?

A team of astronomers using the National Science Foundation’s (NSF) Green Bank Telescope (GBT) has brought us closer to finding the answers.

The researchers, members of the NANOGrav Physics Frontiers Center, discovered that a rapidly rotating millisecond pulsar, called J0740+6620, is the most massive neutron star ever measured, packing 2.17 times the mass of our Sun into a sphere only 30 kilometers across. This measurement approaches the limits of how massive and compact a single object can become without crushing itself down into a black hole. Recent work involving gravitational waves observed from colliding neutron stars by LIGO suggests that 2.17 solar masses might be very near that limit.

“Neutron stars are as mysterious as they are fascinating,” said Thankful Cromartie, a graduate student at the University of Virginia and Grote Reber pre-doctoral fellow at the National Radio Astronomy Observatory in Charlottesville, Virginia. “These city-sized objects are essentially ginormous atomic nuclei. They are so massive that their interiors take on weird properties. Finding the maximum mass that physics and nature will allow can teach us a great deal about this otherwise inaccessible realm in astrophysics.”

Pulsars get their name because of the twin beams of radio waves they emit from their magnetic poles. These beams sweep across space in a lighthouse-like fashion. Some rotate hundreds of times each second. Since pulsars spin with such phenomenal speed and regularity, astronomers can use them as the cosmic equivalent of atomic clocks. Such precise timekeeping helps astronomers study the nature of spacetime, measure the masses of stellar objects, and improve their understanding of general relativity.

In the case of this binary system, which is nearly edge-on in relation to Earth, this cosmic precision provided a pathway for astronomers to calculate the mass of the two stars.

Artist impression and animation of the Shapiro Delay. As the neutron star sends a steady pulse towards the Earth, the passage of its companion white dwarf star warps the space surrounding it, creating the subtle delay in the pulse signal. Animation: BSaxton, NRAO/AUI/NSF

As the ticking pulsar passes behind its white dwarf companion, there is a subtle (on the order of 10 millionths of a second) delay in the arrival time of the signals. This  phenomenon is known as “Shapiro Delay.” In essence, gravity from the white dwarf star slightly warps the space surrounding it, in accordance with Einstein’s general theory of relativity. This warping means the pulses from the rotating neutron star have to travel just a little bit farther as they wend their way around the distortions of spacetime caused by the white dwarf.

Astronomers can use the amount of that delay to calculate the mass of the white dwarf. Once the mass of one of the co-orbiting bodies is known, it is a relatively straightforward process to accurately determine the mass of the other.

Cromartie is the principal author on a paper accepted for publication in Nature Astronomy. The GBT observations were research related to her doctoral thesis, which proposed observing this system at two special points in their mutual orbits to accurately calculate the mass of the neutron star.

“The orientation of this binary star system created a fantastic cosmic laboratory,” said Scott Ransom, an astronomer at NRAO and coauthor on the paper. “Neutron stars have this tipping point where their interior densities get so extreme that the force of gravity overwhelms even the ability of neutrons to resist further collapse. Each “most massive” neutron star we find  brings us closer to identifying that tipping point and helping us to understand the physics of matter at these mindboggling densities.”

These observation were also part of a larger observing campaign known as NANOGrav, short for the North American Nanohertz Observatory for Gravitational Waves, which is a Physics Frontiers Center funded by the NSF.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Green Bank Observatory is supported by the National Science Foundation, and is operated under cooperative agreement by Associated Universities, Inc. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation.

In Other News…

VLA Helps Astronomers Make New Discoveries About Star-Shredding Events

New studies using the VLA and other telescopes have added to our knowledge of what happens when a black hole shreds a star, but also have raised new questions that astronomers must tackle.

Radio Telescope is So Powerful it Can See the Surface of Other Worlds

Get ready for close-up surface images of distant planets in our solar system.

Next Generation VLA Endorsed by Canadian Panel

The Canadian Astronomy Long Range Plan 2020-2030, a report on priorities and recommendations for Canadian astronomy over the next decade, has recommended that Canada support the National Radio Astronomy Observatory’s (NRAO) proposed Next Generation Very Large Array (ngVLA), saying the new facility will enable transformational science across many areas of astrophysics.

The ITL Expects to Create 35 Businesses Between the Third and Tenth Year of Operation

The former Minister of Energy, Ricardo Raineri, who also has a long career as a professor and university researcher and international consultant, was appointed by the American consortium Associated Universities Inc. (AUI) as Director of Development and responsible for executing the installation stage from the Institute of Clean Technologies (ITL).

This Insane Picture of The Moon Was Actually Taken From Earth

A test of a powerful new space imaging instrument has given us a gloriously detailed new perspective of the Apollo 15 Moon landing site.

Successful Test Paves Way for New Planetary Radar

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space conducted a test in November to prove that a new radio telescope system can capture high-resolution images in near-Earth space.

The Very Large Array: Astronomical Shapeshifter

In order to study a wide range of astronomical phenomena, the VLA has several shapes or configurations, each with its own advantages.

ALMA Takes First Step Toward Return to Service

Personnel at the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile have begun the process of returning the facility to an active observational status, following the shutdown caused by COVID-19 in March of 2020.

Adam Cohen, president of the entity that won the Corfo tender: “Our goal is to generate between 25 to 50 new companies in 10 years”

With the focus on putting the Clean Technologies Institute (ICTL) into operation soon is the Associated Universities, Inc. (AUI), the entity that won the Corfo tender that is being questioned by another of the consortiums that was in competition.

CORFO Selects AUI to Build and Manage the Chilean Instituto de Tecnologías Limpias

Santiago, Chile—On January 4th, the Corporación de Fomento de la Producción de Chile (CORFO) Council met to award the Chilean Instituto de Tecnologías Limpias (ICTL) construction, management, and operations to AUI.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL