Going Against the Flow Around a Supermassive Black Hole

At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas. When astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA)

to study this cloud in more detail, they made an unexpected discovery that could explain why supermassive black holes grew so rapidly in the early Universe.

“Thanks to the spectacular resolution of ALMA, we measured the movement of gas in the inner orbits around the black hole,” explains Violette Impellizzeri of the National Radio Astronomy Observatory (NRAO), working at ALMA in Chile and lead author on a paper published in the Astrophysical Journal. “Surprisingly, we found two disks of gas rotating in opposite directions.”

Supermassive black holes already existed when the Universe was young – just a billion years after the Big Bang. But how these extreme objects, whose masses are up to billions of times the mass of the Sun, had time to grow in such a relatively short timespan, is an outstanding question among astronomers. This new ALMA discovery could provide a clue. “Counter-rotating gas streams are unstable, which means that clouds fall into the black hole faster than they do in a disk with a single rotation direction,” said Impellizzeri. “This could be a way in which a black hole can grow rapidly.”

NGC 1068 (also known as Messier 77) is a spiral galaxy approximately 47 million light-years from Earth in the direction of the constellation Cetus. At its center is an active galactic nucleus, a supermassive black hole that is actively feeding itself from a thin, rotating disk of gas and dust, also known as an accretion disk.

Previous ALMA observations revealed that the black hole is not only gulping down material, but also spewing out gas at incredibly high speeds – up to 500 kilometers per second (more than one million miles per hour). This gas that gets expelled from the accretion disk likely contributes to hiding the region around the black hole from optical telescopes.

Impellizzeri and her team used ALMA’s superior zoom lens ability to observe the molecular gas around the black hole. Unexpectedly, they found two counter-rotating disks of gas. The inner disk spans 2-4 light-years and follows the rotation of the galaxy, whereas the outer disk (also known as the torus) spans 4-22 light-years and is rotating the opposite way.

“We did not expect to see this, because gas falling into a black hole would normally spin around it in only one direction,” said Impellizzeri. “Something must have disturbed the flow, because it is impossible for a part of the disk to start rotating backward all on its own.”

Counter-rotation is not an unusual phenomenon in space. “We see it in galaxies, usually thousands of light-years away from their galactic centers,” explained co-author Jack Gallimore from Bucknell University in Lewisburg, Pennsylvania. “The counter-rotation always results from the collision or interaction between two galaxies. What makes this result remarkable is that we see it on a much smaller scale, tens of light-years instead of thousands from the central black hole.”

The astronomers think that the backward flow in NGC 1068 might be caused by gas clouds that fell out of the host galaxy, or by a small passing galaxy on a counter-rotating orbit captured in the disk.

At the moment, the outer disk appears to be in a stable orbit around the inner disk. “That will change when the outer disk begins to fall onto the inner disk, which may happen after a few orbits or a few hundred thousand years. The rotating streams of gas will collide and become unstable, and the disks will likely collapse in a luminous event as the molecular gas falls into the black hole. Unfortunately, we will not be there to witness the fireworks,” said Gallimore.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

# # #

Contact:
Iris Nijman
Interim Public Information Officer for ALMA
[email protected]

Reference: “Counter-Rotation and High Velocity Outflow in the Parsec-Scale Molecular Torus of NGC 1068,” C. M. Violette Impellizzeri et. al., the Astrophysical Journal. DOI: 10.3847/2041-8213/ab3c64

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

In Other News…

Heising—Simons Foundation Partners with AUI and the IAU to Boost Gender Equity Programs for Young Astronomers

The Heising–Simons Foundation (HSF) has awarded $126,500 to Associated Universities, Inc. (AUI) and the International Astronomical Union (IAU) to support two programs: the Women and Girls in Astronomy project and the IAU Junior Member Travel Grant Fund. Women and...

New NSF Funded Project Will Study How Podcasts Can Support Inclusive STEM Learning

[Washington, D.C.] Tumble Media, in partnership with Associated Universities Inc (AUI), Oregon State University (OSU) and Independence Science, has been awarded a $1 million grant by the National Science Foundation (NSF) Division Of Research On Learning. The team will...

AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients

This news article was originally published on NRAO.edu on July 5, 2022.AUI and the National Radio Astronomy Observatory (NRAO) have announced the recipients of the 2022 AUI Board of Trustees NAC Bridge Scholarship Award. Now in its second year, the scholarship...

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities and commemoration of the Stonewall Uprising of 1969 and the ensuing liberation movement it inspired for the ongoing fight for full equality.  At AUI, we celebrate an environment that is safe and welcoming...

2022 AUI Scholarship Recipients

Below are the six recipients of the 2022 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. ELIJAH...

Astronomers Reveal First Image of the Black Hole at the Heart of Our Galaxy

This news article was originally published on NRAO.edu on May 12, 2022.Credit: EHT CollaborationAt simultaneous press conferences around the world, including at a National Science Foundation-sponsored press conference at the US National Press Club in Washington, D.C.,...

Scientists Find Elusive Gas From Post-starburst Galaxies Hiding in Plain Sight

This news article was originally published on NRAO.edu on Apr. 25, 2022.Scientists discovered that post-starburst galaxies condense their gas rather than expelling it, begging the question: what’s actually keeping them from forming stars? Post-starburst galaxies were...

Applications Accepted for 2022 Astronomy in Chile Educator Ambassadors Program

Applications are now being accepted for the 2022 Astronomy in Chile Educator Ambassadors Program (ACEAP).

Inspiring, Retaining and Promoting Female Talent in STEM Careers

Retaining and promoting female talent in science, technology, engineering, and mathematics (STEM) is a goal that must be embraced by large scientific facilities, civil society, academia and the private sector.

NRAO Researcher Receives Prestigious Engineering Award

Matthew Morgan, a scientist and research engineer at the National Radio Astronomy Observatory’s Central Development Laboratory, has received a prestigious engineering award for work that has beneficial applications far beyond its original purpose in radio astronomy.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL