Even Phenomenally Dense Neutron Stars Fall like a Feather

Einstein’s understanding of gravity, as outlined in his general theory of relativity, predicts that all objects fall at the same rate, regardless of their mass or composition. This theory has passed test after test here on Earth, but does it still hold true for some of the most massive and dense objects in the known universe, an aspect of nature known as the Strong Equivalence Principle? An international team of astronomers has given this lingering question its most stringent test ever. Their findings, published in the journal Nature, show that Einstein’s insights into gravity still hold sway, even in one of the most extreme scenarios the Universe can offer.

Take away all air, and a hammer and a feather will fall at the same rate – a concept explored by Galileo in the late 1500s and famously illustrated on the Moon by Apollo 15 astronaut David Scott.

Though a bedrock of Newtonian physics, it took Einstein’s theory of gravity to express how and why this is so. To date, Einstein’s equations have passed all tests, from careful laboratory studies to observations of planets in our solar system. But alternatives to Einstein’s general theory of relativity predict that compact objects with extremely strong gravity, like neutron stars, fall a little differently than objects of lesser mass. That difference, these alternate theories predict, would be due to a compact object’s so-called gravitational binding energy — the gravitational energy that holds it together.

In 2011, the National Science Foundation’s (NSF) Green Bank Telescope (GBT) discovered a natural laboratory to test this theory in extreme conditions: a triple star system called PSR J0337+1715, located about 4,200 light-years from Earth. This system contains a neutron star in a 1.6-day orbit with a white dwarf star, and the pair in a 327-day orbit with another white dwarf further away.

“This is a unique star system,” said Ryan Lynch of the Green Bank Observatory in West Virginia, and coauthor on the paper. “We don’t know of any others quite like it. That makes it a one-of-a-kind laboratory for putting Einstein’s theories to the test.”

Since its discovery, the triple system has been observed regularly by the GBT, the Westerbork Synthesis Radio Telescope in the Netherlands, and the NSF’s Arecibo Observatory in Puerto Rico. The GBT has spent more than 400 hours observing this system, taking data and calculating how each object moves in relation to the other.

How were these telescopes able to study this system? This particular neutron star is actually a pulsar. Many pulsars rotate with a consistency that rivals some of the most precise atomic clocks on Earth. “As one of the most sensitive radio telescopes in the world, the GBT is primed to pick up these faint pulses of radio waves to study extreme physics,” Lynch said. The neutron star in this system pulses (rotates) 366 times per second.

“We can account for every single pulse of the neutron star since we began our observations,” said Anne Archibald of the University of Amsterdam and the Netherlands Institute for Radio Astronomy and principal author on the paper. “We can tell its location to within a few hundred meters. That is a really precise track of where the neutron star has been and where it is going.”

If alternatives to Einstein’s picture of gravity were correct, then the neutron star and the inner white dwarf would each fall differently toward the outer white dwarf. “The inner white dwarf is not as massive or compact as the neutron star, and thus has less gravitational binding energy,” said Scott Ransom, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Virginia, and co-author on the paper.

Through meticulous observations and careful calculations, the team was able to test the system’s gravity using the pulses of the neutron star alone. They found that any acceleration difference between the neutron star and inner white dwarf is too small to detect.

“If there is a difference, it is no more than three parts in a million,” said coauthor Nina Gusinskaia of the University of Amsterdam. This places severe constraints on any alternative theories to general relativity.

This result is ten times more precise that the previous best test of gravity, making the evidence for Einstein’s Strong Equivalence Principle that much stronger. “We’re always looking for better measurements in new places, so our quest to learn about new frontiers in our Universe is going to continue,” concluded Ransom.

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

The Green Bank Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

# # #

Reference: “Universality of free fall from the orbital motion of a pulsar in a stellar triple system,” A. Archibald, et al., Nature, July. 2018. [http://www.nature.com/]

Contact:
Charles Blue
NRAO Public Information Officer
[email protected]
(434) 296-0314

Paul Vosteen
Media Specialist; Education & Public Outreach
Green Bank Observatory
+1.304.456.2212
[email protected]

In Other News…

IMAGE RELEASE: Moon’s Tycho Crater Revealed in Intricate Detail

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space (RI&S) have released a new high-resolution image of the Moon, the highest-ever taken from the ground using new radar technology on the Green Bank Telescope (GBT).

ACEAP Ambassador Heads into Space as First African-American Woman to Pilot Spacecraft

Astronomy in Chile Educator Ambassadors Program participant pilots SpaceX Dragon spacecraftToday Sian Proctor, a participant in the Astronomy in Chile Educator Ambassadors Program (ACEAP) has successfully piloted the Inspiration4 mission carrying her and three other...

NSF Awards Funding for Next-Generation VLA Antenna Development

The National Science Foundation (NSF) has awarded the National Radio Astronomy Observatory (NRAO) $23 million for design and development work on the Next Generation Very Large Array (ngVLA), including producing a prototype antenna.

Andean Science Diplomacy: Interview with Chile’s Ambassador to the U.S., Ambassador Silva

Ambassador Alfonso Silva Navarro leads Chile’s Embassy to the United States since September 2018. His extensive diplomatic career includes being the Chilean Ambassador to Canada, India, and Jamaica, as well as being the Director General on Foreign Affairs at Chile’s Ministry of Foreign Affairs.

NANOGrav & Green Bank Telescope Poised to Make Groundbreaking Discoveries of Gravitational Wave Universe

For the next three years, astronomers from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) will have increased access and new technologies to use on the National Science Foundation’s Green Bank Telescope (GBT) in their breakthrough scientific studies of gravitational waves.

Astronomers make first clear detection of a moon-forming disc around an exoplanet

Using the Atacama Large Millimeter /submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, astronomers have unambiguously detected the presence of a disc around a planet outside our Solar System for the first time.

AUI and Accumen Partner to Increase Crisis Resilience to Natural and Manmade Disasters for Healthcare Sector

AUI and Accumen, Inc. announced they are partnering to provide services to improve crisis resilience to manmade and natural disasters for the healthcare sector at a historically challenging time.

New Scholarship Established by the AUI Board of Trustees

AUI and the National Radio Astronomy Observatory (NRAO) today announced the establishment of the AUI Board of Trustees NAC Bridge Scholarship Award.

2021 Jansky Lectureship Awarded to Mexican Astronomer

Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2021 Karl G. Jansky Lectureship to Professor Luis F. Rodriguez of the National University of Mexico (UNAM).

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities in commemoration of the Stonewall Uprising of 1969. At AUI, we celebrate an environment that is safe and welcoming to all, and the strength that our diversity brings us.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL