There should be a lot of carbon in space, but surprisingly, it’s not always easy to find. While it can be observed in many places, it doesn’t add up to the volume astronomers would expect to see. The discovery of a new, complex molecule (1-cyanopyrene), challenges these expectations, about where the building blocks for carbon are found, and how they evolve.
Recent News
Massive Stars Born from Violent Cosmic Collapse
An international team of astronomers has observed evidence that massive stars can be born from rapidly collapsing clouds of gas and dust, challenging long-held assumptions about star formation.
AI Meets the Cosmos: Astronomers’ Ambitious Plan to Tackle Astronomical Big Data
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) is working with scientific, academic, and industry partners across the country to find solutions, as part of the NSF-Simons AI Institute for Cosmic Origins (NSF-Simons CosmicAI), a five-year program made possible by funding from the NSF and the Simons Foundation.
Astronomers Discover Jupiter-sized Objects Drawn into Each Other’s Orbit
Credit: Gemini Observatory/Jon Lomberg
VLA & JWST observe binary system of free-floating JuMBOs
In our most basic understanding of our Solar System, planets are drawn into the orbit of our massive star, the Sun. But what happens to planet-sized objects that don’t have a star? A team of astronomers studying Jupiter-mass binary objects (JuMBOs) in the Orion Nebula are gaining a new understanding of these unusual systems. These massive, free-floating objects are being drawn into orbit with each other. These latest findings come from observations made by the Karl G. Jansky Very Large Array (VLA) at the U.S. National Science Foundation National Radio Astronomy Observatory, and NASA’s James Webb Space Telescope.
This groundbreaking discovery has been made in the field of astronomy, thanks to advancements in sensitivity that have allowed scientists to detect fainter and smaller objects in space. Using the VLA, astronomers searched for counterparts to a group of 40 Jupiter-mass binary objects known as JuMBOs, previously identified by Pearson and McCaughrean in 2023. Surprisingly, only one of these objects, JuMBO 24, exhibited a radio counterpart.
This remarkable finding challenges existing theories on the formation of stars and planets. The radio luminosity of the two planets in this binary system is significantly higher than that detected in brown dwarfs, which are objects that share similarities with these planets. This abnormality raises new questions and provides exciting research opportunities to further understand the nature of these free-floating planets. While it is possible that the association between infrared and radio signals is coincidental, the team considers this to be highly unlikely, with odds of only 1 in 10,000. This discovery builds upon the previous work of Kao et al., who, in 2018, detected a single planetary-mass system resembling the components of JuMBO 24 using the VLA.
Dr. Luis F. Rodriguez, Professor Emeritus at the National Autonomous University of Mexico, who participated in this research, emphasizes the significance of the discovery. “What’s truly remarkable is that these objects could have moons similar to Europa or Enceladus, both of which have underground oceans of liquid water that could support life”, he stated.
The detection of radio waves originating from both components of a double system of free-floating planets represents a significant milestone in our exploration of the universe. It also presents an exciting opportunity for further research into the potential habitability of planets beyond our solar system. Read the entire published findings online.
About NRAO
The National Radio Astronomy Observatory (NRAO) is a National Science Foundation facility, operated under a cooperative agreement by Associated Universities, Inc.
NRAO Media Contacts
Corrina C. Jaramillo Feldman
Public Information Officer – New Mexico
VLA, VLBA, ngVLA
Tel: +1 505-366-7267
[email protected]
Jill Malusky
NRAO & GBO News & Public Information Manager
Tel: +1 304-460-5608
[email protected]
This news article was originally published on the NRAO website on February 12, 2024.
Recent News
Astronomers Discover New Building Blocks for Complex Organic Matter
There should be a lot of carbon in space, but surprisingly, it’s not always easy to find. While it can be observed in many places, it doesn’t add up to the volume astronomers would expect to see. The discovery of a new, complex molecule (1-cyanopyrene), challenges these expectations, about where the building blocks for carbon are found, and how they evolve.
Massive Stars Born from Violent Cosmic Collapse
An international team of astronomers has observed evidence that massive stars can be born from rapidly collapsing clouds of gas and dust, challenging long-held assumptions about star formation.
AI Meets the Cosmos: Astronomers’ Ambitious Plan to Tackle Astronomical Big Data
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) is working with scientific, academic, and industry partners across the country to find solutions, as part of the NSF-Simons AI Institute for Cosmic Origins (NSF-Simons CosmicAI), a five-year program made possible by funding from the NSF and the Simons Foundation.