ALMA Dives into Black Hole’s ‘Sphere of Influence’

What happens inside a black hole stays inside a black hole, but what happens inside a black hole’s “sphere of influence” – the innermost region of a galaxy where a black hole’s gravity is the dominant force – is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

New observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole. This disk lies at the center of NGC 3258, a massive elliptical galaxy

about 100 million light-years from Earth. Based on these observations, a team led by astronomers from Texas A&M University and the University of California, Irvine, have determined that this black hole weighs a staggering 2.25 billion solar masses, the most massive black hole measured with ALMA to date.

Though supermassive black holes can have masses that are millions to billions of times that of the Sun, they account for just a small fraction of the mass of an entire galaxy. Isolating the influence of a black hole’s gravity from the stars, interstellar gas, and dark matter in the galactic center is challenging and requires highly sensitive observations on phenomenally small scales.

“Observing the orbital motion of material as close as possible to a black hole is vitally important when accurately determining the black hole’s mass.” said Benjamin Boizelle, a postdoctoral researcher at Texas A&M University and lead author on the study appearing in the Astrophysical Journal. “These new observations of NGC 3258 demonstrate ALMA’s amazing power to map the rotation of gaseous disks around supermassive black holes in stunning detail.”

Astronomers use a variety of methods to measure black hole masses. In giant elliptical galaxies, most measurements come from observations of the orbital motion of stars around the black hole, taken in visible or infrared light. Another technique, using naturally occurring water masers (radio-wavelength lasers) in gas clouds orbiting around black holes, provides higher precision, but these masers are very rare and are associated almost exclusively with spiral galaxies having smaller black holes.

During the past few years, ALMA has pioneered a new method to study black holes in giant elliptical galaxies. About 10 percent of elliptical galaxies contain regularly rotating disks of cold, dense gas at their centers. These disks contain carbon monoxide (CO) gas, which can be observed with millimeter-wavelength radio telescopes.

By using the Doppler shift of the emission from CO molecules, astronomers can measure the velocities of orbiting gas clouds, and ALMA makes it possible to resolve the very centers of galaxies where the orbital speeds are highest.

“Our team has been surveying nearby elliptical galaxies with ALMA for several years to find and study disks of molecular gas rotating around giant black holes,” said Aaron Barth of UC Irvine, a co-author on the study.  “NGC 3258 is the best target we’ve found, because we’re able to trace the disk’s rotation closer to the black hole than in any other galaxy.”

Just as the Earth orbits around the Sun faster than Pluto does because it experiences a stronger gravitational force, the inner regions of the NGC 3258 disk orbit faster than the outer parts due to the black hole’s gravity. The ALMA data show that the disk’s rotation speed rises from 1 million kilometers per hour at its outer edge, about 500 light-years from the black hole, to well over 3 million kilometers per hour near the disk’s center at a distance of just 65 light-years from the black hole.

The researchers determined the black hole’s mass by modeling the disk’s rotation, accounting for the additional mass of the stars in the galaxy’s central region and other details such as the slightly warped shape of the gaseous disk. The clear detection of rapid rotation enabled the researchers to determine the black hole’s mass with a precision better than one percent, although they estimate an additional systematic 12 percent uncertainty in the measurement because the distance to NGC 3258 is not known very precisely. Even accounting for the uncertain distance, this is one of the most highly precise mass measurements for any black hole outside of the Milky Way galaxy.

“The next challenge is to find more examples of near-perfect rotating disks like this one so that we can apply this method to measure black hole masses in a larger sample of galaxies,” concluded Boizelle. “Additional ALMA observations that reach this level of precision will help us better understand the growth of both galaxies and black holes across the age of the universe.”

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

Contact: Suzy Gurton
[email protected]

Reference: “A Precision Measurement of the Mass of the Black Hole in NGC 3258
from High-Resolution ALMA Observations of its Circumnuclear Disk,” B. Boizelle, et al., the Astrophysical Journal: apj.aas.org; Preprint: https://arxiv.org/abs/1906.06267

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

In Other News…

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities in commemoration of the Stonewall Uprising of 1969. At AUI, we celebrate an environment that is safe and welcoming to all, and the strength that our diversity brings us.

Cyber Expert Wins FBI Community Leadership Award

Robert R. Wells, special agent in charge of the Charlotte Division of the FBI has chosen a local cyber expert as the 2020 Director’s Community Leadership Award (DCLA) recipient for North Carolina. Torry Crass has been an invaluable partner to the FBI Charlotte field office since 2013.

2021 AUI Scholarship Recipients

Below are the fourteen winners of the 2021 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice.

ITL Development Director: “We are convinced that our proposal is solid and meets all the requirements”

In an interview with Nueva Mining and Energy Magazine, Ricardo Raineri, Director of Development of the Chilean Institute of Clean Technologies (ITL) refers to the criticism that has hovered over Corfo’s decision, arguing that “it is essential to understand and emphasize that our proposal is based on an open platform model ”.

West Virginia Students Contact International Space Station LIVE

Friday, May 7th at 8:00 AM EDT, students in rural West Virginia will experience this once in a lifetime opportunity. Green Bank Elementary-Middle School (GBEMS) will be contacting astronaut Mark Vande Hei on the International Space Station (ISS).

The Universe just Became More Accessible: Free Software for Exploring the Universe Through Sound

Today free software has been released to help the blind and visually impaired (BIV) explore the universe through sound. With the support from the National Science Foundation’s STEM+C program, Innovators Developing Accessible Tools for Astronomy (IDATA) brought together nearly 200 BIV and sighted students, teachers, astronomers and programmers from across the Nation to create this innovative software called Afterglow Access.

Nueva Mineria covers the importance of ICTL’s Open Science model pioneered by AUI

The ICTL is a Chilean clean technology institute that is committed to developing innovations in the mining, power, battery, manufacturing, and related industrial sectors. The Open Science model allows a larger community to access R&D facilities based on the merit of their proposals.

VIDEO: Multi-wavelength Observations Reveal Impact of Black Hole on M87 Galaxy

In 2019, a worldwide collaboration of scientists used a global collection of radio telescopes called the Event Horizon Telescope (EHT) to make the first-ever image of a black hole — the supermassive black hole at the core of the galaxy M87, some 55 million light-years from Earth.

ACEAP Alumna Selected as Astronaut for SpaceX

Sian Procter, a participant in the Astronomy in Chile Educator Ambassadors Program (ACEAP) in 2016, has been selected as an astronaut by SpaceX. The Inspiration4 mission, scheduled to launch sometime after 15 September 2021, will orbit Earth for three days and conduct a variety of experiments.

New Images Reveal Magnetic Structures Near Supermassive Black Hole

The Event Horizon Telescope (EHT) — the worldwide collaboration that produced the first image of a black hole in 2019 — has produced a new image showing details of the magnetic fields in the region closest to the supermassive black hole at the core of the galaxy M87. The new work is providing astronomers with important clues about how powerful jets of material can be produced in that region.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL