The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) has entered into a groundbreaking partnership with the NSF Leadership-Class Computing Facility (NSF LCCF), led by the Texas Advanced Computing Center, to pioneer a transformative data processing system for the next era of radio astronomy.
Recent News
Brightest Ever Fast Radio Burst Allows Researchers To Identify Its Origin
An international team of astronomers have observed one of the brightest fast radio bursts (FRBs) ever detected—and pinpointed its location in a nearby galaxy (NGC 4141).
Satellite Internet Meets Space Science: A Groundbreaking Solution for Spectrum Sharing
Researchers from the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO), in collaboration with SpaceX, have introduced the Operational Data Sharing (ODS) system, a self-reporting framework designed to foster coexistence between radio telescopes and non-geostationary orbit (NGSO) satellite constellations, such as SpaceX’s Starlink.
Radio Astronomy and Black Holes
How a Telescope Made Mostly of Nothing Became Astronomy’s ‘Killer App’
Astronomers have captured the first direct visual evidence of a black hole at the center of Messier 87 (M87), a giant elliptical galaxy 55 million light-years
from Earth. This unprecedented observation was made possible by the Event Horizon Telescope (EHT), an array of eight individual radio telescopes spread over four continents and linked together to form a new, exceptionally powerful telescope. The newly released image reveals a glowing ring-like structure with a dark central region — a feature known as the “shadow” of a black hole.
As the most sensitive and largest element of the EHT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile was instrumental in making this observation possible. With ALMA, the EHT achieved one of the highest resolutions ever in astronomy, 20 microarcseconds. A microarcseconds is about the size of the period at the end of this sentence if you were looking from the Moon. These observations will help scientists understand how the universe behaves under conditions of extreme gravity, forces so strong that they warp the fabric of space and time. This is just the latest step in a journey that began nearly 50 years ago with the National Radio Astronomy Observatory’s (NRAO) Green Bank Interferometer: the first telescope to identify and locate the supermassive black hole at the center of the Milky Way. The EHT is a turbo-powered version of that pioneering telescope.
The full EHT story, including background on black holes and supporting materials can be found at the National Science Foundation’s special section: “Exploring Black Holes.”
NRAO Contacts:
Kazunori Akiyama
The NRAO Jansky fellow at MIT Haystack Observatory who developed new imaging techniques for the EHT and led international efforts to create the first images of the supermassive black hole in M87 as a coordinator of the imaging group.
617-715-5579; [email protected]
Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
434-296-0314; [email protected]
Recent News
NSF Facilities Partner to Transform Data Processing for Next-Generation Radio Astronomy
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) has entered into a groundbreaking partnership with the NSF Leadership-Class Computing Facility (NSF LCCF), led by the Texas Advanced Computing Center, to pioneer a transformative data processing system for the next era of radio astronomy.
Brightest Ever Fast Radio Burst Allows Researchers To Identify Its Origin
An international team of astronomers have observed one of the brightest fast radio bursts (FRBs) ever detected—and pinpointed its location in a nearby galaxy (NGC 4141).
Satellite Internet Meets Space Science: A Groundbreaking Solution for Spectrum Sharing
Researchers from the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO), in collaboration with SpaceX, have introduced the Operational Data Sharing (ODS) system, a self-reporting framework designed to foster coexistence between radio telescopes and non-geostationary orbit (NGSO) satellite constellations, such as SpaceX’s Starlink.