High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.
Recent News
Students Contribute to New Understanding of ‘Twinkling’ Pulsars
The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.
Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau
Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.
‘Fast Radio Burst’ Sheds New Light on Origin of These Extreme Events
Fast Radio Bursts (FRBs), brief yet brilliant eruptions of cosmic radio waves, have baffled astronomers since they were first reported nearly a decade ago. Though they appear to come from the distant Universe, none of these enigmatic events has revealed more than the slimmest details about how and where it formed, until now.
By poring over 650 hours of archival data from the National Science Foundation’s (NSF) Green Bank Telescope (GBT), a team of astronomers uncovered the most detailed record ever of an FRB. Their research indicates that the burst originated inside a highly magnetized region of space, possibly linking it to a recent supernova or the interior of an active star-forming nebula.
“We now know that the energy from this FRB passed through a dense, magnetized region shortly after it formed. This significantly narrows down the source’s environment and type of event that triggered the burst,” said Kiyoshi Masui, an astronomer with the University of British Columbia and the Canadian Institute for Advanced Research.
Lasting only a fraction of a second yet packing a phenomenal amount of energy, FRBs are brief radio flashes of unknown origin that appear to come from random directions on the sky. Though only a handful have been documented previously, astronomers believe that the observable Universe is rocked by thousands of these events each day.
Mining Data to Find Elusive Nugget
The astronomers found the newly identified FRB, dubbed FRB 110523, by using highly specialized software developed by Masui and his colleague Jonathan Sievers from the University of KwaZulu-Natal in Durban, South Africa.
The recorded data — a total of 40 terabytes — created a substantial analysis challenge, which was made even more difficult because the otherwise short, sharp signal of an FRB becomes “smeared out” in frequency by its journey through space.
This smearing of the radio signal, known as dispersion delay, is often used to estimate distance in radio astronomy: the greater the dispersion, the further the object from Earth. In this case, the dispersion measure suggests the FRB originated as far as 6 billion light-years away.
Dispersion, however, masks the presence of an FRB within archival radio data.
The new software decreased the time required to analyze the data by counteracting the effects of dispersion, which restored the burst to its original appearance.
The team — primarily researchers with cosmology backgrounds — used this software to conduct an initial pass of the GBT data to flag any candidate signal. This yielded more than 6,000 possible FRBs, which were individually inspected by team member Hsiu-Hsien Lin from Carnegie Mellon University in Pittsburgh. His analysis winnowed the field until only one candidate remained.
Details Hidden in Polarization
This one signal, however, was exceptional and contained more details about its polarization than any previously identified. Prior to this detection, only circular polarization was associated with an FRB. The new GBT study includes a detection of both circular and linear polarization.
“Hidden within an incredibly massive dataset, we found a very peculiar signal, one that matched all the known characteristics of a Fast Radio Burst, but with a tantalizing extra polarization element that we simply have never seen before,” said Jeffrey Peterson, a faculty member in Carnegie Mellon’s McWilliams Center for Cosmology.
Polarization is a property of electromagnetic radiation, including light and radio waves, and indicates the orientation of the wave. Polarizing sunglasses use this property to block out a portion of the Sun’s rays and 3-D movies use it to achieve the illusion of depth.
The researchers used this additional information to determine that the radio light from the FRB exhibited Faraday rotation, a corkscrew-like twisting radio waves acquire by passing through a powerful magnetic field.
“This tells us something about the magnetic field that the burst traveled through on its way to us, giving a hint about the burst’s environment,” explained Masui. “It also gives the theorists a bit more to work with when they come up with explanations for these bursts.”
“Taken together, these remarkable data reveal more about an FRB than we have ever seen before and give us important constraints on these mysterious events,” concludes Masui. “We also have an exciting new tool to search through otherwise overwhelming archival data to uncover more examples and get closer to truly understanding their nature.”
The results are published in the journal Nature.
The 100-meter Green Bank Telescope is the world’s largest fully steerable radio telescope. Its location in the National Radio Quiet Zone and the West Virginia Radio Astronomy Zone protects the incredibly sensitive telescope from unwanted radio interference, enabling it to perform unique observations.
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
# # #
Additional Quotes:
Jay Lockman, National Radio Astronomy Observatory, Green Bank: “FRBs are exotic and enigmatic. This discovery with the GBT is extremely important because for the first time it sheds light on the environment where FRBs can occur.”
Maura McLaughlin, West Virginia University: “This burst should be the first of many detections of FRBs with the GBT. In addition, new systems that can detect FRBs in real-time are being developed for the GBT. These will enable follow-up at these events with other telescopes at multiple wavelengths, bringing us even closer to understanding their origins.”
Ue-Li Pen, Canadian Institute for Theoretical Astrophysics at the University of Toronto: “This is the second innovative use of the same GBT data set. The 650 hours were originally taken for a pioneering cosmological survey, which spawned a new generation of radio telescopes: CHIME, Hirax, Tianlai. This new discovery was enabled by the repeated perseverance of this team to again overcome what was previously perceived as futile, and is already impacting the mission of the new telescopes.”
The researchers wish to acknowledge the support of the National Science Foundation (Grant Number: 1211777) and the Ministry of Science and Technology of China (Grant Number: 2012AA121701).
Recent News
NSF VLA Contributes Crucial Puzzle Piece to ‘Peculiar’ High Energy Transient
High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.
Students Contribute to New Understanding of ‘Twinkling’ Pulsars
The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.
Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau
Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.