A team of astronomers has made a surprising discovery using the U.S. National Science Foundation Green Bank Telescope (NSF GBT): eleven fast-moving clouds of cold, neutral hydrogen gas—akin to “ice cubes”—surviving deep inside the Fermi Bubbles.
Recent News
ALMA Reveals Stunning Details of Infant Galaxies in the Early Universe
The [CII] Resolved ISM in STar-forming galaxies with ALMA (CRISTAL survey) peered back to when the Universe was only about one billion years old – a mere toddler in cosmic terms. These observations are helping scientists understand how galaxies formed and evolved from primordial gas clouds into the organized structures we see today.
NSF NRAO Leads Critical Spectrum Studies to Safeguard Radio Astronomy
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) has received funding to expand its study of an invisible—and crucial—scientific and technological resource: the radio spectrum.
Radio Astronomy and Black Holes
How a Telescope Made Mostly of Nothing Became Astronomy’s ‘Killer App’
Astronomers have captured the first direct visual evidence of a black hole at the center of Messier 87 (M87), a giant elliptical galaxy 55 million light-years
from Earth. This unprecedented observation was made possible by the Event Horizon Telescope (EHT), an array of eight individual radio telescopes spread over four continents and linked together to form a new, exceptionally powerful telescope. The newly released image reveals a glowing ring-like structure with a dark central region — a feature known as the “shadow” of a black hole.
As the most sensitive and largest element of the EHT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile was instrumental in making this observation possible. With ALMA, the EHT achieved one of the highest resolutions ever in astronomy, 20 microarcseconds. A microarcseconds is about the size of the period at the end of this sentence if you were looking from the Moon. These observations will help scientists understand how the universe behaves under conditions of extreme gravity, forces so strong that they warp the fabric of space and time. This is just the latest step in a journey that began nearly 50 years ago with the National Radio Astronomy Observatory’s (NRAO) Green Bank Interferometer: the first telescope to identify and locate the supermassive black hole at the center of the Milky Way. The EHT is a turbo-powered version of that pioneering telescope.
The full EHT story, including background on black holes and supporting materials can be found at the National Science Foundation’s special section: “Exploring Black Holes.”
NRAO Contacts:
Kazunori Akiyama
The NRAO Jansky fellow at MIT Haystack Observatory who developed new imaging techniques for the EHT and led international efforts to create the first images of the supermassive black hole in M87 as a coordinator of the imaging group.
617-715-5579; [email protected]
Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
434-296-0314; [email protected]
Recent News
Galactic Mystery: How “Ice Cubes” Survive in the Milky Way’s Blazing Bubbles
A team of astronomers has made a surprising discovery using the U.S. National Science Foundation Green Bank Telescope (NSF GBT): eleven fast-moving clouds of cold, neutral hydrogen gas—akin to “ice cubes”—surviving deep inside the Fermi Bubbles.
ALMA Reveals Stunning Details of Infant Galaxies in the Early Universe
The [CII] Resolved ISM in STar-forming galaxies with ALMA (CRISTAL survey) peered back to when the Universe was only about one billion years old – a mere toddler in cosmic terms. These observations are helping scientists understand how galaxies formed and evolved from primordial gas clouds into the organized structures we see today.
NSF NRAO Leads Critical Spectrum Studies to Safeguard Radio Astronomy
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) has received funding to expand its study of an invisible—and crucial—scientific and technological resource: the radio spectrum.