High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.
Recent News
Students Contribute to New Understanding of ‘Twinkling’ Pulsars
The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.
Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau
Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.
$21 Million NSF Award Will Bring ngVLA Design to Life
The largest astronomical array in North America is one step closer to becoming a reality. The National Radio Astronomy Observatory (NRAO) is pleased to announce that the National Science Foundation (NSF) has awarded a 3-year, $21 million grant to Associated Universities, Inc. (AUI) to further the design of the next generation Very Large Array (ngVLA). Said Tony Beasley, Director of NRAO, “Despite challenging economic times, this award demonstrates a strong commitment from the research community and the NSF to create astronomy’s next great instrument, and continue U.S. radio astronomy leadership. NRAO is committed to begin construction of the ngVLA later this decade.”
Late this summer, the NSF formally entered the ngVLA project into the Major Research Equipment and Facilities Construction (MREFC) design process at the Conceptual Design Phase. The NSF-led Conceptual Design Review (CDR) is expected next Spring and will be supported by this most recent award. While this does not yet represent a commitment to construct the telescope, the review signals the project’s strong scientific and technical promise and growing project readiness. The three MREFC reviews (Conceptual, Preliminary, and Final) will provide NSF with the critical information needed to consider adding ngVLA construction to a budget request later this decade.
The concept for the ngVLA was created in 2016, and the telescope was presented to the ASTRO2020 Decadal Survey in 2019. Delivery of the ngVLA prototype antenna to the VLA site is expected in summer 2024.
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.
This news article was originally published on NRAO website on September 14, 2023.
Recent News
NSF VLA Contributes Crucial Puzzle Piece to ‘Peculiar’ High Energy Transient
High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.
Students Contribute to New Understanding of ‘Twinkling’ Pulsars
The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.
Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau
Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.