AUI News  >

Radio Observations of Compact Symmetric Objects Shed New Light on Black Hole Phenomenon

Recent News

Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau

Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.

Young Stars in the Milky Way’s Backyard Challenge Our Understanding of How They Form

Astronomers have made groundbreaking discoveries about young star formation in the Large Magellanic Cloud (LMC), using the James Webb Space Telescope (JWST), along with observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The study, published in The Astrophysical Journal, gives new insight into the early stages of massive star formation outside our galaxy.

Astronomers Catch Unprecedented Features at Brink of Active Black Hole

International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities including the National Science Foundation (NSF) National Radio Astronomy Observatory (NSF NRAO) Very Long Baseline Array (VLBA). The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.

Radio Observations of Compact Symmetric Objects Shed New Light on Black Hole Phenomenon

A single, massive star is devoured by a black hole and causes the black hole to shoot out an ultrafast, bipolar jet.

Credit: S. Dagnello, B. Saxton/NRAO/AUI/NSF

A groundbreaking investigation into Compact Symmetric Objects (CSOs), a peculiar class of galaxies, has revealed new insights into their spectacular but short-lived existence

Compact Symmetric Objects (CSOs) have long puzzled astronomers with their unique characteristics. These active galaxies harbor supermassive black holes that emit powerful jets traveling at near-light speeds in opposite directions. However, unlike their counterparts in other galaxies, these jets remain compact, not extending out to great distances as expected. For decades, scientists presumed that CSOs were youthful entities, with their jets destined to expand over time.

A Compact Symmetric Objects forms in space.

When a star is captured by the gravitational force of a black hole and shredded, or spaghettified, sometimes twin jets spiral outward. These jets can give birth to Compact Symmetrical Objects (CSOs), which scientists have confirmed are a unique class of active galaxies.

New findings, published in three papers in The Astrophysical Journal, challenge this notion. The Caltech-led team, spearheaded by Anthony (Tony) Readhead, Robinson Professor of Astronomy, Emeritus, discovered that CSOs have relatively short lifespans. Through an exhaustive review of literature and observations, the team identified over 3,000 CSO candidates, confirming 64 as authentic CSOs and recognizing 15 new candidates. These objects were previously observed by the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO)’s Very Long Baseline Array (VLBA), renowned for its unparalleled resolution.

The studies, funded by NSF, NASA, Caltech, and the Max Planck Institute for Radio Astronomy in Bonn, Germany, mark a significant step forward in understanding the dynamic processes shaping our universe. Read the full Caltech release and view NRAO’s scientific visualization animation. 

About NRAO

The National Radio Astronomy Observatory (NRAO) is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

For media inquiries or further information, please contact: 

NRAO Media Contact

Corrina C. Jaramillo Feldman
Public Information Officer – New Mexico
VLA, VLBA, ngVLA
Tel: +1 505-366-7267
[email protected]

This news article was originally published on the NRAO website on March 26, 2024.

Recent News

Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau

Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.

Young Stars in the Milky Way’s Backyard Challenge Our Understanding of How They Form

Astronomers have made groundbreaking discoveries about young star formation in the Large Magellanic Cloud (LMC), using the James Webb Space Telescope (JWST), along with observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The study, published in The Astrophysical Journal, gives new insight into the early stages of massive star formation outside our galaxy.

Astronomers Catch Unprecedented Features at Brink of Active Black Hole

International teams of astronomers monitoring a supermassive black hole in the heart of a distant galaxy have detected features never seen before using data from NASA missions and other facilities including the National Science Foundation (NSF) National Radio Astronomy Observatory (NSF NRAO) Very Long Baseline Array (VLBA). The features include the launch of a plasma jet moving at nearly one-third the speed of light and unusual, rapid X-ray fluctuations likely arising from near the very edge of the black hole.