New radio images from the the U.S. National Science Foundation Very Large Array trace a pair of powerful plasma jets launched by galaxy VV 340a’s central supermassive black hole, which appear to be driving hot coronal gas out of the galaxy and shutting down future star formation.
Recent News
Radio Telescopes Uncover ‘Invisible’ Gas Around Record-Shattering Cosmic Explosion
Astronomers using the U.S. National Science Foundation Very Large Array and the Atacama Large Millimeter/submillimeter Array have revealed a dense cocoon of gas around one of the most extreme cosmic explosions ever seen, showing that a ravenous black hole ripped apart a massive star and then lit up its surroundings with powerful X-rays.
New Discovery Challenges Evolution of Galaxy Clusters
Peering back in time, around 12 billion years, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have found the most distant and direct evidence of scorching gas in a forming galaxy cluster, SPT2349-56. The hot plasma, seen when the Universe was just 1.4 billion years old, is far hotter and more pressurized than current theories predicted for such an early system.
NRAO and SpaceX Coordinate to Protect Radio Astronomy
NRAO and SpaceX have engaged in coordinated experiments involving NRAO telescopes and the Starlink satellite constellation for over two years. Early experiments began in late 2021 with the deployment of working Starlink user terminals near the Jansky Very Large Array (VLA) in New Mexico and have continued to the present day. These experiments highlight the ways in which satellite constellations and radio telescopes might be able to coexist, provided there is mutual awareness of what the other is doing.
Supported by the National Science Foundation, NRAO and SpaceX are developing a system called Operational Data Sharing (ODS) that provides the current status (position in the sky and observing frequency) of two of its telescopes: the VLA in New Mexico and the Green Bank Telescope (GBT) in West Virginia. SpaceX is able to incorporate these data into its operational algorithm so that its Starlink satellites can steer their downlink beams away the NRAO telescope “boresight” (where the telescopes are pointed in the sky) at the moment an observation is taking place. This adaptation helps to ensure critical internet connectivity for users of the Starlink system while protecting and potentially expanding the frequency bands that radio astronomers can use for their research.
For more details on this developing system, see a recent video produced for NRAO by One World Media above.
This news article was originally published on the NRAO website on March 18, 2024.
Recent News
The NSF Very Large Array Helps Reveal Record-Breaking Stream of Super-Heated Gas from Nearby Galaxy
New radio images from the the U.S. National Science Foundation Very Large Array trace a pair of powerful plasma jets launched by galaxy VV 340a’s central supermassive black hole, which appear to be driving hot coronal gas out of the galaxy and shutting down future star formation.
Radio Telescopes Uncover ‘Invisible’ Gas Around Record-Shattering Cosmic Explosion
Astronomers using the U.S. National Science Foundation Very Large Array and the Atacama Large Millimeter/submillimeter Array have revealed a dense cocoon of gas around one of the most extreme cosmic explosions ever seen, showing that a ravenous black hole ripped apart a massive star and then lit up its surroundings with powerful X-rays.
New Discovery Challenges Evolution of Galaxy Clusters
Peering back in time, around 12 billion years, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have found the most distant and direct evidence of scorching gas in a forming galaxy cluster, SPT2349-56. The hot plasma, seen when the Universe was just 1.4 billion years old, is far hotter and more pressurized than current theories predicted for such an early system.