Researchers from the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO), in collaboration with SpaceX, have introduced the Operational Data Sharing (ODS) system, a self-reporting framework designed to foster coexistence between radio telescopes and non-geostationary orbit (NGSO) satellite constellations, such as SpaceX’s Starlink.
Recent News
NSF VLBA Peers Into the “Eye of Sauron” to Solve Cosmic Neutrino Mystery
Findings, published in Astronomy & Astrophysics Letters, reveal that the blazar PKS 1424+240 – dubbed the “Eye of Sauron” for its striking appearance – points its powerful jet almost directly at Earth, creating an extreme cosmic lighthouse effect.
Astronomers Catch Supermassive Black Hole in the Act of ‘Waking Up’
This discovery offers new insights into how these cosmic giants begin to influence their environments and could help solve longstanding puzzles about galaxy evolution.
Next-Generation Very Large Array Antenna Design to be Used By German Astronomers

Bavarian state government and regional universities fund construction of antenna on Germany’s highest peak
The U.S. National Science Foundation National Radio Astronomy Observatory has announced a significant collaboration with the Bavarian State Government to construct a cutting-edge radio telescope atop Germany’s highest mountain. This radio telescope will use the design of the proposed NSF NRAO’s Next Generation Very Large Array (ngVLA).
Known as the Wetterstein Millimeter Telescope (WMT), this antenna could interface with the NSF NRAO’s proposed ngVLA, while also having the capability to function independently. The WMT will be strategically positioned at the summit of the Zugspitze, offering exceptional observing conditions due to its high altitude and clear skies. This location can significantly improve the antenna’s sensitivity and resolution across the millimeter wavelength range, allowing for groundbreaking astronomical observations.
The project is funded by the Bavarian State Government, as announced in their recent press release. “The Wetterstein Millimeter Telescope will be an exciting research facility and further opens up the possibility of one day establishing a global ngVLA network,” said ngVLA Project Scientist Eric Murphy of the NSF NRAO. “Its placement on the Zugspitze provides unparalleled observing conditions, which can enhance the overall sensitivity and resolution of the ngVLA. This may enable astronomers to conduct unprecedented research across a wide range of astrophysical topics.”
The WMT is not only a significant scientific achievement in its own right, but also has the potential to act as a catalyst for the development of a larger, dedicated interferometric array. Such an array, which could potentially include up to 16 antennas, would leverage the considerable astronomical expertise and infrastructure already present in Germany, and could expand the NSF NRAO’s proposed ngVLA reach and scientific impact.
About NRAO
The National Radio Astronomy Observatory is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
This news article was originally published on the NRAO website on February 10, 2025.
Recent News
Satellite Internet Meets Space Science: A Groundbreaking Solution for Spectrum Sharing
Researchers from the U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO), in collaboration with SpaceX, have introduced the Operational Data Sharing (ODS) system, a self-reporting framework designed to foster coexistence between radio telescopes and non-geostationary orbit (NGSO) satellite constellations, such as SpaceX’s Starlink.
NSF VLBA Peers Into the “Eye of Sauron” to Solve Cosmic Neutrino Mystery
Findings, published in Astronomy & Astrophysics Letters, reveal that the blazar PKS 1424+240 – dubbed the “Eye of Sauron” for its striking appearance – points its powerful jet almost directly at Earth, creating an extreme cosmic lighthouse effect.
Astronomers Catch Supermassive Black Hole in the Act of ‘Waking Up’
This discovery offers new insights into how these cosmic giants begin to influence their environments and could help solve longstanding puzzles about galaxy evolution.