IMAGE RELEASE: Galaxies in the Perseus Cluster

For galaxies, as for people, living in a crowd is different from living alone. Recently, astronomers used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) to learn how a crowded environment affects galaxies in the Perseus Cluster, a collection of thousands of galaxies some 240 million light-years from Earth.

Left: The giant galaxy NGC 1275, at the core of the cluster, is seen in new detail, including a newly-revealed wealth of complex, filamentary structure in its radio lobes.

Center: The galaxy NGC 1265 shows the effects of its motion through the tenuous material between the galaxies. Its radio jets are bent backward by that interaction, then merge into a single, broad “tail.” The tail then is further bent, possibly by motions within the intergalactic material.

Right: The jets of the galaxy IC 310 are bent backward, similarly to NGC 1265, but appear closer because of the viewing angle from Earth. That angle also allows astronomers to directly observe energetic gamma rays generated near the supermassive black hole at the galaxy’s core.

Such images can help astronomers better understand the complex environment of galaxy clusters, which are the largest gravitationally-bound structures in the universe, and which harbor a variety of still poorly-understood phenomena.

“These images show us previously-unseen structures and details and that helps our effort to determine the nature of these objects,” said Marie-Lou Gendron-Marsolais, an ESO/ALMA Fellow in Santiago, Chile. She and a number of international collaborators are announcing their results in the Monthly Notices of the Royal Astronomical Society.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

CREDIT: M. Gendron-Marsolais et al.; S. Dagnello, NRAO/AUI/NSF; SDSS.

###

Media Contact:
Dave Finley, Public Information Officer
(575) 835-7302
[email protected]

###

Scientific Paper in MNRAS

In Other News…

VLA Helps Astronomers Make New Discoveries About Star-Shredding Events

New studies using the VLA and other telescopes have added to our knowledge of what happens when a black hole shreds a star, but also have raised new questions that astronomers must tackle.

Radio Telescope is So Powerful it Can See the Surface of Other Worlds

Get ready for close-up surface images of distant planets in our solar system.

Next Generation VLA Endorsed by Canadian Panel

The Canadian Astronomy Long Range Plan 2020-2030, a report on priorities and recommendations for Canadian astronomy over the next decade, has recommended that Canada support the National Radio Astronomy Observatory’s (NRAO) proposed Next Generation Very Large Array (ngVLA), saying the new facility will enable transformational science across many areas of astrophysics.

The ITL Expects to Create 35 Businesses Between the Third and Tenth Year of Operation

The former Minister of Energy, Ricardo Raineri, who also has a long career as a professor and university researcher and international consultant, was appointed by the American consortium Associated Universities Inc. (AUI) as Director of Development and responsible for executing the installation stage from the Institute of Clean Technologies (ITL).

This Insane Picture of The Moon Was Actually Taken From Earth

A test of a powerful new space imaging instrument has given us a gloriously detailed new perspective of the Apollo 15 Moon landing site.

Successful Test Paves Way for New Planetary Radar

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space conducted a test in November to prove that a new radio telescope system can capture high-resolution images in near-Earth space.

The Very Large Array: Astronomical Shapeshifter

In order to study a wide range of astronomical phenomena, the VLA has several shapes or configurations, each with its own advantages.

ALMA Takes First Step Toward Return to Service

Personnel at the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile have begun the process of returning the facility to an active observational status, following the shutdown caused by COVID-19 in March of 2020.

Adam Cohen, president of the entity that won the Corfo tender: “Our goal is to generate between 25 to 50 new companies in 10 years”

With the focus on putting the Clean Technologies Institute (ICTL) into operation soon is the Associated Universities, Inc. (AUI), the entity that won the Corfo tender that is being questioned by another of the consortiums that was in competition.

CORFO Selects AUI to Build and Manage the Chilean Instituto de Tecnologías Limpias

Santiago, Chile—On January 4th, the Corporación de Fomento de la Producción de Chile (CORFO) Council met to award the Chilean Instituto de Tecnologías Limpias (ICTL) construction, management, and operations to AUI.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL