This partnership leverages JHU’s strengths in data science, artificial intelligence, and astrophysics, aligning with their investments in the Data Science and AI Institute and their leadership in multi-messenger astronomy. By combining the NSF NRAO’s expertise in radio astronomy with JHU’s cutting-edge computational resources, the collaboration will tackle the immense data processing and analysis challenges posed by the ngVLA and future astronomical surveys.
Recent News
NSF National Radio Astronomy Observatory Collaborates with RIX Industries
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) is excited to announce a collaboration with RIX Industries to explore innovative cryogenic cooling solutions for the Next Generation Very Large Array (ngVLA).
Lighting the Way: Cenca Bridge Wins Simons Foundation Funding for Expanding Astronomy Opportunities
The internationally recognized nonprofit organization Cenca Bridge has won $1.5 million, to be received over 5 years, from the Simons Foundation to support and expand their internships, mentorships and career development opportunities. The U.S. National Science Foundation National Radio Astronomy Observatory has provided administrative and leadership support in these efforts.
IMAGE RELEASE: Galaxies in the Perseus Cluster

For galaxies, as for people, living in a crowd is different from living alone. Recently, astronomers used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) to learn how a crowded environment affects galaxies in the Perseus Cluster, a collection of thousands of galaxies some 240 million light-years from Earth.
Left: The giant galaxy NGC 1275, at the core of the cluster, is seen in new detail, including a newly-revealed wealth of complex, filamentary structure in its radio lobes.
Center: The galaxy NGC 1265 shows the effects of its motion through the tenuous material between the galaxies. Its radio jets are bent backward by that interaction, then merge into a single, broad “tail.” The tail then is further bent, possibly by motions within the intergalactic material.
Right: The jets of the galaxy IC 310 are bent backward, similarly to NGC 1265, but appear closer because of the viewing angle from Earth. That angle also allows astronomers to directly observe energetic gamma rays generated near the supermassive black hole at the galaxy’s core.
Such images can help astronomers better understand the complex environment of galaxy clusters, which are the largest gravitationally-bound structures in the universe, and which harbor a variety of still poorly-understood phenomena.
“These images show us previously-unseen structures and details and that helps our effort to determine the nature of these objects,” said Marie-Lou Gendron-Marsolais, an ESO/ALMA Fellow in Santiago, Chile. She and a number of international collaborators are announcing their results in the Monthly Notices of the Royal Astronomical Society.
The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
CREDIT: M. Gendron-Marsolais et al.; S. Dagnello, NRAO/AUI/NSF; SDSS.
###
Media Contact:
Dave Finley, Public Information Officer
(575) 835-7302
[email protected]
###
This news article was originally published on the NRAO website on November 12, 2020.
Recent News
NRAO and Johns Hopkins University Launch ngVLA Partnership
This partnership leverages JHU’s strengths in data science, artificial intelligence, and astrophysics, aligning with their investments in the Data Science and AI Institute and their leadership in multi-messenger astronomy. By combining the NSF NRAO’s expertise in radio astronomy with JHU’s cutting-edge computational resources, the collaboration will tackle the immense data processing and analysis challenges posed by the ngVLA and future astronomical surveys.
NSF National Radio Astronomy Observatory Collaborates with RIX Industries
The U.S. National Science Foundation National Radio Astronomy Observatory (NSF NRAO) is excited to announce a collaboration with RIX Industries to explore innovative cryogenic cooling solutions for the Next Generation Very Large Array (ngVLA).
Lighting the Way: Cenca Bridge Wins Simons Foundation Funding for Expanding Astronomy Opportunities
The internationally recognized nonprofit organization Cenca Bridge has won $1.5 million, to be received over 5 years, from the Simons Foundation to support and expand their internships, mentorships and career development opportunities. The U.S. National Science Foundation National Radio Astronomy Observatory has provided administrative and leadership support in these efforts.