Astronomers Catch Multiple-Star System in First Stages of Formation

For the first time, astronomers have caught a multiple-star system in the beginning stages of its formation, and their direct observations of this process give strong support to one of several suggested pathways to producing such systems.

The scientists looked at a cloud of gas some 800 light-years from Earth, homing in on a core of gas that contains one young protostar and three dense condensations that they say will collapse into stars in the astronomically-short period of 40,000 years. Of the eventual four stars, the astronomers predict that three may become a stable triple-star system.

“Seeing such a multiple star system in its early stages of formation has been a longstanding challenge, but the combination of the Very Large Array (VLA) and the Green Bank Telescope (GBT) has given us the first look at such a young system,” said Jaime Pineda, of the Institute for Astronomy, ETH Zurich, in Switzerland.

Artist's conception of the B5 complex as seen today, left, and as it will appear as a multiple-star system in about 40,000 years, right. Credit: Bill Saxton, NRAO/AUI/NSF

Artist’s conception of the B5 complex as seen today, left, and as it will appear as a multiple-star system in about 40,000 years, right. Credit: Bill Saxton, NRAO/AUI/NSF

The scientists used the VLA and GBT, along with the James Clerk Maxwell Telescope (JCMT) in Hawaii, to study a dense core of gas called Barnard 5 (B5) in a region where young stars are forming in the constellation Perseus. This object was known to contain one young forming star.

When the research team led by Pineda used the VLA to map radio emission from methane molecules, they discovered that filaments of gas in B5 are fragmenting, and the fragments are beginning to form into additional stars that will become a multiple-star system.

“We know that these stars eventually will form a multi-star system because our observations show that these gas condensations are gravitationally bound,” Pineda said. “This is the first time we’ve been able to show that such a young system is gravitationally bound,” he added.

“This provides fantastic evidence that fragmentation of gas filaments is a process that can produce multiple-star systems,” Pineda said. Other proposed mechanisms include fragmentation of the main gas core, fragmentation within a disk of material orbiting a young star, and gravitational capture. “We’ve now convincingly added fragmentation of gas filaments to this list,” Pineda added.

The condensations in B5 that will produce stars now range from one-tenth to more than one-third the mass of the Sun, the scientists said. Their separations will range from 3,000 to 11,000 times the Earth-Sun distance.

B5 complex seen within its neighborhood. Credit: NRAO/AUI/NSF

B5 complex seen within its neighborhood.
Credit: NRAO/AUI/NSF

The astronomers analyzed the dynamics of the gas condensations and predict that, when they form into stars, they will form a stable system of an inner binary, orbited by a more-distant third star. The fourth star, they suggest, will not long remain part of the system.

“Nearly half of all stars are in multiple systems, but catching such systems at the very early stages of formation has been challenging. Thanks to the combination of the VLA and the GBT, we now have some important new insight into how multiple systems form. Our next step will be to look at other star-forming regions using the new capabilities of the VLA and of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile,” Pineda said

In addition to Pineda, the international research team included members from the U.S., the UK, Germany, and Chile. The astronomers reported their findings in the 12 February edition of the scientific journal Nature.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

In Other News…

AUI and Accumen Partner to Increase Crisis Resilience to Natural and Manmade Disasters for Healthcare Sector

AUI and Accumen, Inc. announced they are partnering to provide services to improve crisis resilience to manmade and natural disasters for the healthcare sector at a historically challenging time.

New Scholarship Established by the AUI Board of Trustees

AUI and the National Radio Astronomy Observatory (NRAO) today announced the establishment of the AUI Board of Trustees NAC Bridge Scholarship Award.

2021 Jansky Lectureship Awarded to Mexican Astronomer

Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2021 Karl G. Jansky Lectureship to Professor Luis F. Rodriguez of the National University of Mexico (UNAM).

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities in commemoration of the Stonewall Uprising of 1969. At AUI, we celebrate an environment that is safe and welcoming to all, and the strength that our diversity brings us.

Cyber Expert Wins FBI Community Leadership Award

Robert R. Wells, special agent in charge of the Charlotte Division of the FBI has chosen a local cyber expert as the 2020 Director’s Community Leadership Award (DCLA) recipient for North Carolina. Torry Crass has been an invaluable partner to the FBI Charlotte field office since 2013.

2021 AUI Scholarship Recipients

Below are the fourteen winners of the 2021 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice.

ITL Development Director: “We are convinced that our proposal is solid and meets all the requirements”

In an interview with Nueva Mining and Energy Magazine, Ricardo Raineri, Director of Development of the Chilean Institute of Clean Technologies (ITL) refers to the criticism that has hovered over Corfo’s decision, arguing that “it is essential to understand and emphasize that our proposal is based on an open platform model ”.

West Virginia Students Contact International Space Station LIVE

Friday, May 7th at 8:00 AM EDT, students in rural West Virginia will experience this once in a lifetime opportunity. Green Bank Elementary-Middle School (GBEMS) will be contacting astronaut Mark Vande Hei on the International Space Station (ISS).

The Universe just Became More Accessible: Free Software for Exploring the Universe Through Sound

Today free software has been released to help the blind and visually impaired (BIV) explore the universe through sound. With the support from the National Science Foundation’s STEM+C program, Innovators Developing Accessible Tools for Astronomy (IDATA) brought together nearly 200 BIV and sighted students, teachers, astronomers and programmers from across the Nation to create this innovative software called Afterglow Access.

Nueva Mineria covers the importance of ICTL’s Open Science model pioneered by AUI

The ICTL is a Chilean clean technology institute that is committed to developing innovations in the mining, power, battery, manufacturing, and related industrial sectors. The Open Science model allows a larger community to access R&D facilities based on the merit of their proposals.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL