ALMA Discovers Massive Rotating Disk in Early Universe

In our 13.8 billion-year-old universe, most galaxies like our Milky Way form gradually, reaching their large mass relatively late. But a new discovery made with the Atacama Large Millimeter/submillimeter Array (ALMA)

 of a massive rotating disk galaxy, seen when the universe was only ten percent of its current age, challenges the traditional models of galaxy formation. This research appears on 20 May 2020 in the journal Nature.

Galaxy DLA0817g, nicknamed the Wolfe Disk after the late astronomer Arthur M. Wolfe, is the most distant rotating disk galaxy ever observed. The unparalleled power of ALMA made it possible to see this galaxy spinning at 170 miles (272 kilometers) per second, similar to our Milky Way.

“While previous studies hinted at the existence of these early rotating gas-rich disk galaxies, thanks to ALMA we now have unambiguous evidence that they occur as early as 1.5 billion years after the Big Bang,” said lead author Marcel Neeleman of the Max Planck Institute for Astronomy in Heidelberg, Germany.

How did the Wolfe Disk form?
The discovery of the Wolfe Disk provides a challenge for many galaxy formation simulations, which predict that massive galaxies at this point in the evolution of the cosmos grew through many mergers of smaller galaxies and hot clumps of gas.

“Most galaxies that we find early in the universe look like train wrecks because they underwent consistent and often ‘violent’ merging,” explained Neeleman. “These hot mergers make it difficult to form well-ordered, cold rotating disks like we observe in our present universe.”

In most galaxy formation scenarios, galaxies only start to show a well-formed disk around 6 billion years after the Big Bang. The fact that the astronomers found such a disk galaxy when the universe was only ten percent of its current age, indicates that other growth processes must have dominated.

“We think the Wolfe Disk has grown primarily through the steady accretion of cold gas,” said J. Xavier Prochaska, of the University of California, Santa Cruz and coauthor of the paper. “Still, one of the questions that remains is how to assemble such a large gas mass while maintaining a relatively stable, rotating disk.”

Star formation
The team also used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the NASA/ESA Hubble Space Telescope to learn more about star formation in the Wolfe Disk. In radio wavelengths, ALMA looked at the galaxy’s movements and mass of atomic gas and dust while the VLA measured the amount of molecular mass – the fuel for star formation. In UV-light, Hubble observed massive stars. “The star formation rate in the Wolfe Disk is at least ten times higher than in our own galaxy,” explained Prochaska. “It must be one of the most productive disk galaxies in the early universe.”

A ‘normal’ galaxy
The Wolfe Disk was first discovered by ALMA in 2017. Neeleman and his team found the galaxy when they examined the light from a more distant quasar. The light from the quasar was absorbed as it passed through a massive reservoir of hydrogen gas surrounding the galaxy – which is how it revealed itself. Rather than looking for direct light from extremely bright, but more rare galaxies, astronomers used this ‘absorption’ method to find fainter, and more ‘normal’ galaxies in the early universe.

“The fact that we found the Wolfe Disk using this method, tells us that it belongs to the normal population of galaxies present at early times,” said Neeleman. “When our newest observations with ALMA surprisingly showed that it is rotating, we realized that early rotating disk galaxies are not as rare as we thought and that there should be a lot more of them out there.”

“This observation epitomizes how our understanding of the universe is enhanced with the advanced sensitivity that ALMA brings to radio astronomy,” said Joe Pesce, astronomy program director at the National Science Foundation, which funds the telescope. “ALMA allows us to make new, unexpected findings with almost every observation.”

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

# # #

Media contact:
Iris Nijman
News and Public Information Manager
National Radio Astronomy Observatory (NRAO)
[email protected]
+1 (434) 249-3423

This research was presented in a paper titled “A Cold, Massive, Rotating Disk 1.5 Billion Years after the
Big Bang,” by Marcel Neeleman & J. Xavier Prochaska, et al., appearing in the journal Nature. DOI: 10.1038/s41586-020-2276-y

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Images & Videos

Artist impression of the Wolfe Disk, a massive rotating disk galaxy in the early, dusty universe. The galaxy was initially discovered when ALMA examined the light from a more distant quasar (top left).
Credit: NRAO/AUI/NSF, S. Dagnello

ALMA radio image of the Wolfe Disk, seen when the universe was only ten percent of its current age.
Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello

Video Press Release
Brief video (1:20) explaining this research result.
Credit: NRAO/AUI/NSF, S. Dagnello

The Wolfe Disk as seen with ALMA (right – in red), VLA (left – in green) and the Hubble Space Telescope (both images – blue). In radio light, ALMA looked at the galaxy’s movements and mass of atomic gas and dust and the VLA measured the amount of molecular mass. In UV-light, Hubble observed massive stars. The VLA image is made in a lower spatial resolution than the ALMA image, and therefore looks larger and more pixelated.
Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble

NRAO Director Tony Beasley Appointed to New Five-Year Term

 

Dr. Tony Beasley, Director of the National Science Foundation’s National Radio Astronomy Observatory (NRAO), has been appointed to a new five-year term. The Board of Trustees for AUI— which operates NRAO under a cooperative agreement— and the NRAO Director Review Committee conducted a thorough review of Beasley’s leadership and performance earlier this year, and have appointed the Director to the new term through May 2027.

 

“Tony is an outstanding leader and stalwart champion for NRAO, the field of radio astronomy, the beauty of science, and the critical role of big facilities in the R&D ecosystem,” said Adam Cohen, President and CEO of AUI, which operates NRAO under a cooperative agreement. “He continues to support very innovative education and outreach programs to help build the workforce of the future, as well as programs and activities to enhance diversity, equity, and inclusion in our workplaces.” 

 

Over the course of more than two decades, Beasley’s leadership has shaped the present and future of NRAO’s leading-edge radio astronomy facilities, including the Atacama Large Millimeter/submillimeter Array (ALMA), Very Long Baseline Array (VLBA), and Very Large Array (VLA). More recently, he has collaborated on efforts to encourage cooperation between commercial spectrum users and research facilities and has created partnerships to explore the use of Green Bank Observatory’s radar systems in planetary science and defense applications. 

 

Beasley recently has generated significant support for the future of NRAO’s facilities, reaching major milestones in 2021. The observatory’s proposed next generation Very Large Array (ngVLA) received high priority for new ground-based observatories in the U.S. National Academy of Sciences’ Astronomy and Astrophysics Decadal Survey (Astro2020). Late last year, NRAO’s Central Development Laboratory (CDL) received approval and funding through the ambitious ALMA2030 Development Plan to upgrade its Band 6 receivers, which are ALMA’s most productive receivers. 

 

An ardent supporter of diversity, equity, and inclusion in astronomy and astrophysics, Beasley has elevated the efforts of NRAO’s Office of Diversity and Inclusion, Broader Impacts, and community development initiatives, including the National Astronomy Consortium (NAC), RADIAL, National and International Non-traditional Exchange (NINE), Research Experiences for Undergraduate students (REU), and most recently, grants for women in engineering fellowships and the development of a next generation Learning Center (ngLC). 

 

“Being a part of NRAO for more than 20 years has given me the opportunity to observe, contribute to, and lead growth and change in astronomy that positively impacts our facilities and allows us to collaborate with other like-minded institutions,” said Beasley. “I am proud of the work our teams have accomplished in research, engineering, outreach, and equity, and look forward to serving the NRAO community for another five years.”

 

Beasley, who holds a Doctorate in Astrophysics from the University of Sydney, was first appointed as NRAO Director in February 2012, after previously serving the observatory and the radio astronomy community in multiple capacities. He joined NRAO as a Postdoctoral Fellow in 1991 and served as Deputy Assistant Director in 1997 and Assistant Director from 1998 to 2000. He briefly left NRAO that year to become Project Manager for the Combined Array for Research in Millimeter-wave Astronomy (CARMA). In 2004, he returned to NRAO as Assistant Director, as well as Project Manager for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. From 2008 to 2012, Beasley served as the Chief Operating Officer and Project Manager of NSF’s National Ecological Observatory Network (NEON). In addition to his role as NRAO Director, Beasley presently serves as the AUI Vice President for Radio Astronomy Operations. 

 

In January 2022, Beasley was honored as a Lifetime Fellow of the American Association for the Advancement of Science (AAAS) in recognition of his significant contributions to the field of radio astronomy. 

 

In Other News…

AUI Board of Trustees Elects Christine Wilson as Board Chair and William Harris as Vice Chair

AUI Board of Trustees Elects Christine Wilson as Board Chair and William Harris as Vice Chair Washington, D.C.— The AUI Board of Trustees met at AUI’s Dunn Loring office in Vienna, VA September 22 and 23. Following President Adam Cohen’s overview of AUI, and reports...

Heising—Simons Foundation Partners with AUI and the IAU to Boost Gender Equity Programs for Young Astronomers

The Heising–Simons Foundation (HSF) has awarded $126,500 to Associated Universities, Inc. (AUI) and the International Astronomical Union (IAU) to support two programs: the Women and Girls in Astronomy project and the IAU Junior Member Travel Grant Fund. Women and...

New NSF Funded Project Will Study How Podcasts Can Support Inclusive STEM Learning

[Washington, D.C.] Tumble Media, in partnership with Associated Universities Inc (AUI), Oregon State University (OSU) and Independence Science, has been awarded a $1 million grant by the National Science Foundation (NSF) Division Of Research On Learning. The team will...

AUI and NRAO Announce 2022 NAC Bridge Scholarship Recipients

This news article was originally published on NRAO.edu on July 5, 2022.AUI and the National Radio Astronomy Observatory (NRAO) have announced the recipients of the 2022 AUI Board of Trustees NAC Bridge Scholarship Award. Now in its second year, the scholarship...

Pride Month Statement

Pride Month is a time for celebration of LGBTQIA+ communities and commemoration of the Stonewall Uprising of 1969 and the ensuing liberation movement it inspired for the ongoing fight for full equality.  At AUI, we celebrate an environment that is safe and welcoming...

2022 AUI Scholarship Recipients

Below are the six recipients of the 2022 AUI Scholarship conducted by International Scholarship and Tuition Services, Inc. These students will each receive an award of $3,500 per year to aid in defraying expenses at the college or university of their choice. ELIJAH...

Astronomers Reveal First Image of the Black Hole at the Heart of Our Galaxy

This news article was originally published on NRAO.edu on May 12, 2022.Credit: EHT CollaborationAt simultaneous press conferences around the world, including at a National Science Foundation-sponsored press conference at the US National Press Club in Washington, D.C.,...

Scientists Find Elusive Gas From Post-starburst Galaxies Hiding in Plain Sight

This news article was originally published on NRAO.edu on Apr. 25, 2022.Scientists discovered that post-starburst galaxies condense their gas rather than expelling it, begging the question: what’s actually keeping them from forming stars? Post-starburst galaxies were...

Applications Accepted for 2022 Astronomy in Chile Educator Ambassadors Program

Applications are now being accepted for the 2022 Astronomy in Chile Educator Ambassadors Program (ACEAP).

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL