ALMA Discovers Massive Rotating Disk in Early Universe

In our 13.8 billion-year-old universe, most galaxies like our Milky Way form gradually, reaching their large mass relatively late. But a new discovery made with the Atacama Large Millimeter/submillimeter Array (ALMA)

 of a massive rotating disk galaxy, seen when the universe was only ten percent of its current age, challenges the traditional models of galaxy formation. This research appears on 20 May 2020 in the journal Nature.

Galaxy DLA0817g, nicknamed the Wolfe Disk after the late astronomer Arthur M. Wolfe, is the most distant rotating disk galaxy ever observed. The unparalleled power of ALMA made it possible to see this galaxy spinning at 170 miles (272 kilometers) per second, similar to our Milky Way.

“While previous studies hinted at the existence of these early rotating gas-rich disk galaxies, thanks to ALMA we now have unambiguous evidence that they occur as early as 1.5 billion years after the Big Bang,” said lead author Marcel Neeleman of the Max Planck Institute for Astronomy in Heidelberg, Germany.

How did the Wolfe Disk form?
The discovery of the Wolfe Disk provides a challenge for many galaxy formation simulations, which predict that massive galaxies at this point in the evolution of the cosmos grew through many mergers of smaller galaxies and hot clumps of gas.

“Most galaxies that we find early in the universe look like train wrecks because they underwent consistent and often ‘violent’ merging,” explained Neeleman. “These hot mergers make it difficult to form well-ordered, cold rotating disks like we observe in our present universe.”

In most galaxy formation scenarios, galaxies only start to show a well-formed disk around 6 billion years after the Big Bang. The fact that the astronomers found such a disk galaxy when the universe was only ten percent of its current age, indicates that other growth processes must have dominated.

“We think the Wolfe Disk has grown primarily through the steady accretion of cold gas,” said J. Xavier Prochaska, of the University of California, Santa Cruz and coauthor of the paper. “Still, one of the questions that remains is how to assemble such a large gas mass while maintaining a relatively stable, rotating disk.”

Star formation
The team also used the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) and the NASA/ESA Hubble Space Telescope to learn more about star formation in the Wolfe Disk. In radio wavelengths, ALMA looked at the galaxy’s movements and mass of atomic gas and dust while the VLA measured the amount of molecular mass – the fuel for star formation. In UV-light, Hubble observed massive stars. “The star formation rate in the Wolfe Disk is at least ten times higher than in our own galaxy,” explained Prochaska. “It must be one of the most productive disk galaxies in the early universe.”

A ‘normal’ galaxy
The Wolfe Disk was first discovered by ALMA in 2017. Neeleman and his team found the galaxy when they examined the light from a more distant quasar. The light from the quasar was absorbed as it passed through a massive reservoir of hydrogen gas surrounding the galaxy – which is how it revealed itself. Rather than looking for direct light from extremely bright, but more rare galaxies, astronomers used this ‘absorption’ method to find fainter, and more ‘normal’ galaxies in the early universe.

“The fact that we found the Wolfe Disk using this method, tells us that it belongs to the normal population of galaxies present at early times,” said Neeleman. “When our newest observations with ALMA surprisingly showed that it is rotating, we realized that early rotating disk galaxies are not as rare as we thought and that there should be a lot more of them out there.”

“This observation epitomizes how our understanding of the universe is enhanced with the advanced sensitivity that ALMA brings to radio astronomy,” said Joe Pesce, astronomy program director at the National Science Foundation, which funds the telescope. “ALMA allows us to make new, unexpected findings with almost every observation.”

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

# # #

Media contact:
Iris Nijman
News and Public Information Manager
National Radio Astronomy Observatory (NRAO)
[email protected]
+1 (434) 249-3423

This research was presented in a paper titled “A Cold, Massive, Rotating Disk 1.5 Billion Years after the
Big Bang,” by Marcel Neeleman & J. Xavier Prochaska, et al., appearing in the journal Nature. DOI: 10.1038/s41586-020-2276-y

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Images & Videos

Artist impression of the Wolfe Disk, a massive rotating disk galaxy in the early, dusty universe. The galaxy was initially discovered when ALMA examined the light from a more distant quasar (top left).
Credit: NRAO/AUI/NSF, S. Dagnello

ALMA radio image of the Wolfe Disk, seen when the universe was only ten percent of its current age.
Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello

Video Press Release
Brief video (1:20) explaining this research result.
Credit: NRAO/AUI/NSF, S. Dagnello

The Wolfe Disk as seen with ALMA (right – in red), VLA (left – in green) and the Hubble Space Telescope (both images – blue). In radio light, ALMA looked at the galaxy’s movements and mass of atomic gas and dust and the VLA measured the amount of molecular mass. In UV-light, Hubble observed massive stars. The VLA image is made in a lower spatial resolution than the ALMA image, and therefore looks larger and more pixelated.
Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble

In Other News…

Stanley Whittingham on development in Chile: “Perhaps in 15 years they will no longer have internal combustion vehicles”

This news article was originally published on FUTURO360.com on Jan. 19, 2022.The chemist referred to encouraging the production of clean energy in order to stop the damage that has been caused during the last 30 years, which has encouraged global warming. In addition,...

28 WOMEN in STEM BECAME the FIRST GENERATION of PROVOCA MENTORS

As the end of 2021 approaches, we celebrate the certification of 28 women in STEM who became the first generation of PROVOCA mentors, a trained group of professionals and students in science, technology, engineering and mathematics that will provide mentoring to girls and young college students who decide to pursue a career in these disciplines.

Next Generation Very Large Array Strongly Endorsed by Decadal Survey

This news article was originally published on NRAO.edu on Nov. 4, 2021. The Astronomy and Astrophysics Decadal Survey (Astro2020) of the U.S. National Academy of Sciences has published its report and the Next Generation Very Large Array (ngVLA) received high priority...

IMAGE RELEASE: Moon’s Tycho Crater Revealed in Intricate Detail

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space (RI&S) have released a new high-resolution image of the Moon, the highest-ever taken from the ground using new radar technology on the Green Bank Telescope (GBT).

ACEAP Ambassador Heads into Space as First African-American Woman to Pilot Spacecraft

Astronomy in Chile Educator Ambassadors Program participant pilots SpaceX Dragon spacecraftToday Sian Proctor, a participant in the Astronomy in Chile Educator Ambassadors Program (ACEAP) has successfully piloted the Inspiration4 mission carrying her and three other...

NSF Awards Funding for Next-Generation VLA Antenna Development

The National Science Foundation (NSF) has awarded the National Radio Astronomy Observatory (NRAO) $23 million for design and development work on the Next Generation Very Large Array (ngVLA), including producing a prototype antenna.

Andean Science Diplomacy: Interview with Chile’s Ambassador to the U.S., Ambassador Silva

Ambassador Alfonso Silva Navarro leads Chile’s Embassy to the United States since September 2018. His extensive diplomatic career includes being the Chilean Ambassador to Canada, India, and Jamaica, as well as being the Director General on Foreign Affairs at Chile’s Ministry of Foreign Affairs.

NANOGrav & Green Bank Telescope Poised to Make Groundbreaking Discoveries of Gravitational Wave Universe

For the next three years, astronomers from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) will have increased access and new technologies to use on the National Science Foundation’s Green Bank Telescope (GBT) in their breakthrough scientific studies of gravitational waves.

Astronomers make first clear detection of a moon-forming disc around an exoplanet

Using the Atacama Large Millimeter /submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, astronomers have unambiguously detected the presence of a disc around a planet outside our Solar System for the first time.

AUI and Accumen Partner to Increase Crisis Resilience to Natural and Manmade Disasters for Healthcare Sector

AUI and Accumen, Inc. announced they are partnering to provide services to improve crisis resilience to manmade and natural disasters for the healthcare sector at a historically challenging time.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL