AUI News  >

2021 Jansky Lectureship Awarded to Mexican Astronomer

Recent News

NSF VLA Contributes Crucial Puzzle Piece to ‘Peculiar’ High Energy Transient

High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.

Students Contribute to New Understanding of ‘Twinkling’ Pulsars

The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.

Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau

Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.

2021 Jansky Lectureship Awarded to Mexican Astronomer

Associated Universities, Inc. (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2021 Karl G. Jansky Lectureship to Professor Luis F. Rodriguez of the National University of Mexico (UNAM). The Jansky Lectureship is an honor established by the trustees of AUI to recognize outstanding contributions to the advancement of radio astronomy.

Rodriguez is being honored for his significant contributions to the understanding of star formation and X-ray emitting binary star systems, his distinguished career as an educator and popularizer of astronomy, and as a mentor to a generation of radio astronomers. As a member of one of two teams that co-discovered outflows from regions of star formation, he contributed to shaping the current paradigm of star formation. With Felix Mirabel, he discovered the first microquasars in the Milky Way — nearby and smaller analogs to quasars at the hearts of distant galaxies. They received the American Astronomical Society’s Bruno Rossi Prize in 1996 for that work.

In 1992, Rodriguez obtained a grant from the Mexican government to equip the VLA with its first 43-GHz receivers, enabling some of the first images of dust emission from protoplanetary disks around young stars — disks that eventually will produce planets. He was the founding director of the Institute of Radio Astronomy and Astrophysics at UNAM, and is considered the father of radio astronomy in Mexico. As a professor at UNAM since 1979, he has directed 28 student theses. He is author or coauthor of more than 500 scientific publications that have received more than 25,000 citations.

Rodriguez earned a B.S. in Physics from UNAM in 1973 and a Ph.D in Astronomy from Harvard University in 1978. He has received the Mexican Award of Sciences, the most important such recognition given in that country, the Robert J. Trumpler Award of the Astronomical Society of the Pacific, and is one of only 40 members of Mexico’s National College, which brings together the country’s foremost scientists and artists. He is a foreign member of the U.S. National Academy of Sciences and of the Spanish Royal Society of Exact, Physical and Natural Sciences.

He now is a Professor Emeritus of UNAM’s Institute of Radio Astronomy and Astrophysics, and also is Coordinator of the Mesoamerican Center for Theoretical Physics in Chiapas, Mexico. He is working with NRAO on selecting locations in Mexico for key antennas of the proposed Next Generation Very Large Array.

As Jansky Lecturer, Rodriguez will give presentations, the details of which will be announced later.

First awarded in 1966, the Jansky Lectureship is named in honor of the man who, in 1932, first detected radio waves from a cosmic source. Karl Jansky’s discovery of radio waves from the central region of the Milky Way started the science of radio astronomy.

Other recipients of the Jansky award include eight Nobel laureates (Drs. Subrahmanyan Chandrasekhar, Edward Purcell, Charles Townes, Arno Penzias, Robert Wilson, William Fowler, Joseph Taylor, and Reinhard Genzel) as well as Jocelyn Bell-Burnell, discoverer of the first pulsar, and Vera Rubin, discoverer of dark matter in galaxies.

A complete list of past recipients is here.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

###

This news article was originally published on the NRAO website on June 21, 2021.

Recent News

NSF VLA Contributes Crucial Puzzle Piece to ‘Peculiar’ High Energy Transient

High-energy transient signals are most often determined to be gamma-ray burst events, but the recently-launched Einstein Probe has expanded astronomers’ ability to quickly respond to similar signals occurring at X-ray wavelengths. Now, a multi-wavelength study of EP240408a concludes that while many of the signal’s characteristics might lead to the conclusion that it is a gamma-ray burst, the non-detection at radio wavelengths precludes that possibility.

Students Contribute to New Understanding of ‘Twinkling’ Pulsars

The flexible observing setup of the Green Bank Observatory’s 20-meter telescope enabled frequent, long-duration observations of eight pulsars, spanning two and a half years for a student-driven study carried out by students in the Pulsar Science Collaboratory program.

Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau

Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.