Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.
Recent News
Young Stars in the Milky Way’s Backyard Challenge Our Understanding of How They Form
Astronomers have made groundbreaking discoveries about young star formation in the Large Magellanic Cloud (LMC), using the James Webb Space Telescope (JWST), along with observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The study, published in The Astrophysical Journal, gives new insight into the early stages of massive star formation outside our galaxy.
AUI and Managed Facilities to Attend AAS 245
AUI and the National Science Foundation’s National Radio Astronomy Observatory (NRAO) will present at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, from January 12-16.
Astronomers Catch Unprecedented Features at Brink of Active Black Hole
The source is 1ES 1927+654, a galaxy located about 270 million light-years away in the constellation Draco. It harbors a central black hole with a mass equivalent to about 1.4 million Suns.
“In 2018, the black hole began changing its properties right before our eyes, with a major optical, ultraviolet, and X-ray outburst,” said Eileen Meyer, an associate professor at UMBC (University of Maryland Baltimore County). “Many teams have been keeping a close eye on it ever since.”
She presented her team’s findings at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. A paper led by Meyer describing the radio results was published Jan. 13 in The Astrophysical Journal Letters.
After the outburst, the black hole appeared to return to a quiet state, with a lull in activity for nearly a year. But by April 2023, a team led by Sibasish Laha at UMBC and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, had noted a steady, months-long increase in low-energy X-rays in measurements by NASA’s Neil Gehrels Swift Observatory and NICER (Neutron star Interior Composition Explorer) telescope on the International Space Station. This monitoring program, which also includes observations from NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) and ESA’s (European Space Agency) XMM-Newton mission, continues.
The increase in X-rays triggered the UMBC team to make new radio observations, which indicated a strong and highly unusual radio flare was underway. The scientists then began intensive observations using the NSF NRAO’s VLBA and other facilities. The VLBA, a network of radio telescopes spread across the U.S., combines signals from individual dishes to create what amounts to a powerful, high-resolution radio camera. This allows the VLBA to detect features less than a light-year across at 1ES 1927’s distance.
This text is adapted from a press release shared by NASA. Read their complete release.
Access high-resolution versions of these supplemental images in SVS.
About NRAO
The National Radio Astronomy Observatory (NRAO) is a facility of the U.S. National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Original release text by Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contacts:
Claire Andreoli
301-286-1940
[email protected]
Public Affairs Officer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Jill Malusky
304-456-2236
[email protected]
News & Public Information Manager
National Radio Astronomy Observatory, Charlottesville, Va.
Corrina Jaramillo Feldman
505-366-7267
[email protected]
Public Information Officer – New Mexico
National Radio Astronomy Observatory, Socorro, NM.
This news article was originally published on the NRAO website on January 13, 2025.
Recent News
Double the Disks, Double the Discovery: New Insights into Planet Formation in DF Tau
Tucked away in a star-forming region in the Taurus constellation, a pair of circling stars are displaying some unexpected differences in the circumstellar disks of dust and gas that surround them. A new study led by researchers at Lowell Observatory, combining data from the Atacama Large Millimeter/submillimeter Array (ALMA) and Keck Observatory, has unveiled intriguing findings about planet formation in this binary star system, known as DF Tau, along with other systems in this region.
Young Stars in the Milky Way’s Backyard Challenge Our Understanding of How They Form
Astronomers have made groundbreaking discoveries about young star formation in the Large Magellanic Cloud (LMC), using the James Webb Space Telescope (JWST), along with observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The study, published in The Astrophysical Journal, gives new insight into the early stages of massive star formation outside our galaxy.
AUI and Managed Facilities to Attend AAS 245
AUI and the National Science Foundation’s National Radio Astronomy Observatory (NRAO) will present at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, from January 12-16.