This Insane Picture of The Moon Was Actually Taken From Earth

A test of a powerful new space imaging instrument has given us a gloriously detailed new perspective of the Apollo 15 Moon landing site.

By bouncing a powerful radar signal off the lunar surface, the new instrument has been able to achieve spectacular resolution, showing objects as small as 5 metres (16.4 feet).

 

Designed for the Green Bank Telescope in West Virginia by Raytheon Intelligence & Space, this proof-of-concept technology paves the way for even more powerful radar imaging in the future, potentially allowing scientists to study objects even as far away as Neptune.

Radar imaging of the Moon is not a new idea, however. It’s an extraordinarily useful tool for revealing fine structures on the surface and, at longer wavelengths, even probing over 10 metres below the surface to observe variations in the density of the regolith (here on Earth, this technology can help us find buried ruins).

But the Green Bank Observatory, the National Radio Astronomy Observatory, and Raytheon Intelligence & Space are trying to push the technology even further.

 

In a test in November of last year, the new transmitter sent out a radar signal to the Moon, specifically targeting the Apollo 15 landing site – a small patch of Moon, on a disc 3,474.2 kilometres (2,158.8 miles) in diameter, hundreds of thousands of kilometres away.

This signal, when it bounced back, was collected by the Very Long Baseline Array. This is a collection of radio telescopes across the US, basically combining to create a continent-sized collecting dish.

The image below is the result. That divot in the top middle is a crater called Hadley C, about 6 kilometres across. Snaking past it is the Hadley Rille, thought to be a collapsed lava tube.

 

Believe it or not, though, this ain’t even the half of it. Now that they have successfully proven the concept, the team will be working on an even more powerful transmitter: a 500-kilowatt, high-power radar system that will enable them to see in even more incredible detail.

This tool would be useful for all sorts of science. We could see our Moon more closely, sure. We could see other planets’ moons. It could even be used to image passing asteroids and space debris, which are too faint to see using optical telescopes, but that we can probe using radar technology.

 

This could help us better understand the population of objects – both natural and anthropogenic – in near-Earth space, which in turn could aid in planetary defence against potentially hazardous objects.

“The planned system will be a leap forward in radar science, allowing access to never before seen features of the Solar System from right here on Earth,” said site director Karen O’Neil of the Green Bank Observatory.

And if it gets us even more incredible pictures of the Moon, we’re so here for it.

In Other News…

VLA Helps Astronomers Make New Discoveries About Star-Shredding Events

New studies using the VLA and other telescopes have added to our knowledge of what happens when a black hole shreds a star, but also have raised new questions that astronomers must tackle.

Radio Telescope is So Powerful it Can See the Surface of Other Worlds

Get ready for close-up surface images of distant planets in our solar system.

Next Generation VLA Endorsed by Canadian Panel

The Canadian Astronomy Long Range Plan 2020-2030, a report on priorities and recommendations for Canadian astronomy over the next decade, has recommended that Canada support the National Radio Astronomy Observatory’s (NRAO) proposed Next Generation Very Large Array (ngVLA), saying the new facility will enable transformational science across many areas of astrophysics.

The ITL Expects to Create 35 Businesses Between the Third and Tenth Year of Operation

The former Minister of Energy, Ricardo Raineri, who also has a long career as a professor and university researcher and international consultant, was appointed by the American consortium Associated Universities Inc. (AUI) as Director of Development and responsible for executing the installation stage from the Institute of Clean Technologies (ITL).

This Insane Picture of The Moon Was Actually Taken From Earth

A test of a powerful new space imaging instrument has given us a gloriously detailed new perspective of the Apollo 15 Moon landing site.

Successful Test Paves Way for New Planetary Radar

The National Science Foundation’s Green Bank Observatory (GBO) and National Radio Astronomy Observatory (NRAO), and Raytheon Intelligence & Space conducted a test in November to prove that a new radio telescope system can capture high-resolution images in near-Earth space.

The Very Large Array: Astronomical Shapeshifter

In order to study a wide range of astronomical phenomena, the VLA has several shapes or configurations, each with its own advantages.

ALMA Takes First Step Toward Return to Service

Personnel at the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile have begun the process of returning the facility to an active observational status, following the shutdown caused by COVID-19 in March of 2020.

Adam Cohen, president of the entity that won the Corfo tender: “Our goal is to generate between 25 to 50 new companies in 10 years”

With the focus on putting the Clean Technologies Institute (ICTL) into operation soon is the Associated Universities, Inc. (AUI), the entity that won the Corfo tender that is being questioned by another of the consortiums that was in competition.

CORFO Selects AUI to Build and Manage the Chilean Instituto de Tecnologías Limpias

Santiago, Chile—On January 4th, the Corporación de Fomento de la Producción de Chile (CORFO) Council met to award the Chilean Instituto de Tecnologías Limpias (ICTL) construction, management, and operations to AUI.

You are now leaving AUI

You will be redirected to the related partnering organization's website.

You will be redirected to
in 4 seconds...

Click the link above to continue or CANCEL